跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/08/02 10:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:辜誌良
研究生(外文):Chih-Liang Ku
論文名稱:多層薄膜的機械性質與磨耗特性分析
論文名稱(外文):On Mechanical Properties and Wearing Characteristics of Multiple Thin Films
指導教授:張瑞慶張瑞慶引用關係
指導教授(外文):Rwei-Ching Chang
學位類別:碩士
校院名稱:聖約翰科技大學
系所名稱:自動化及機電整合研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:130
中文關鍵詞:多層薄膜蒸鍍奈米壓痕奈米刮痕磨耗特性
外文關鍵詞:Multiple thin filmsEvaporationNanoindentationNanoscratchWearing Characteristics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:346
  • 評分評分:
  • 下載下載:70
  • 收藏至我的研究室書目清單書目收藏:0
由於在工程應用上的優異性質,使得薄膜技術受到廣泛的重視,其中最基本的就是薄膜機械性質的測量。本文以奈米壓痕法及奈米刮痕法探討多層薄膜的機械性質與磨耗特性,首先以電子束蒸鍍法將鈦、銅、鉻薄膜蒸鍍到矽晶圓基材上,並改變其厚度,單層薄膜分別為鈦薄膜、銅薄膜、鉻薄膜,雙層薄膜分別為鈦/銅薄膜、鈦/鉻薄膜。其次,以奈米壓痕儀配合標準Berkovich探針量測各種薄膜的楊氏係數及硬度。最後,以奈米刮痕儀配合圓錐形探針測量各種薄膜的摩擦係數,且加以推算出磨耗係數及抗磨耗強度。本文呈現不同壓痕負載下各種薄膜的機械性質,最後並討論單層鈦薄膜添加一層鉻及銅薄膜後,交互比較三種薄膜之間的影響。由結果得知:(1)經薄膜之楊氏係數及硬度值深受基材效應的影響,當材料本身機械性質大於基材時,測量值會產生下降之現象。(2)將單層鈦薄膜與雙層鈦/鉻及鈦/銅薄膜交互比較機械性質,得知楊氏係數最大為雙層鈦/鉻薄膜,其次為單層鈦薄膜,最小為雙層鈦/銅薄膜;硬度值最大為雙層鈦/鉻薄膜,其次為單層鈦薄膜,最小為雙層鈦/銅薄膜。(3)由刮痕試驗求得薄膜的磨耗特性,得知摩擦係數最大為雙層鈦/銅薄膜,其次為單層鈦薄膜,最小為雙層鈦/鉻薄膜;磨耗係數最大雙層鈦/鉻薄膜,其次為單層鈦薄膜,最小為雙層鈦/銅薄膜;抗磨耗強度最大雙層鈦/銅,其次為單層鈦薄膜,最小為雙層鈦/鉻薄膜。當添加500 nm的雙層薄膜時,此時摩耗特性皆有所不同。
Because of its outstanding performance, thin films become more and more important in engineering applications. One of the basic of the thin film technology is to characterize its mechanical properties. In this work, nanoindentation and nanoscratch are utilized to measure the mechanical properties and wearing characteristics of multiple thin films. Titanium, copper, and chromium thin films are fabricated on silicon wafer substrate by electronic-beam evaporation. The elastic modulus and hardness of various thin films are measured by the nanoindenter with a stranded Berkovich probe tip. Finally, the coefficient of friction of thin films are measured by the nanoscratch with a conical probe tip, from which the coefficient of wear and resistance of wear can be calculated. It concludes:(1) The elastic modulus and hardness of thin films are deeply effected by the substrate. The measured elastic modulus and hardness decrease as the property of the thin film is larger than the value of the substrate. (2) The multiple titanium/chromium film has the maximum elastic modulus, the second is the single titanium film, and the multiple titanium/copper film has the minimum value. (3) From nanoscratch test, the multiple titanium/copper film has the maximum coefficient of friction, the single titanium film is the second, and the multiple titanium/chromium film has the minimum value. Meanwhile, the multiple titanium/copper thin film has the maximum resistance of wear, and the minimum is the multiple titanium/chromium thin film.
摘要 I
ABSTRACT II
誌謝 III
目錄 IV
圖目錄 VII
表目錄 XVII
第一章 緒論 1
1.1 前言 1
1.2 文顯回顧 2
1.2.1 奈米薄膜的發展 2
1.2.2 接觸力學的發展 3
1.2.3 薄膜機械性質的量測 3
1.3 本文作法 6
第二章 試片製程 7
2.1 基材與鍍材性質簡介 7
2.1.1 基材性質簡介 8
2.1.2 鈦(Ti)鍍材性質簡介 8
2.1.3 鉻(Cr)鍍材性質簡介 9
2.2.4 銅(Cu)鍍材性質簡介 9
2.2 蒸鍍設備及理論 9
2.3 基材表面清洗(標準RCA清洗程序) 11
2.4 蒸鍍薄膜流程 12
2.5 薄膜製作之注意事項 15
第三章 奈米薄膜性質量測 16
3.1 奈米壓痕量測系統 16
3.1.1 實驗儀器與架構 19
3.1.2 探針特性 21
3.1.3 誤差來源與校正 22
3.1.4 實驗時須注意事項 28
3.1.5 實驗步驟 31
3.2 奈米刮痕量測系統 32
3.2.1 實驗儀器與架構 34
3.2.2 探針特性 35
3.2.3 x軸向校正形式(x-axis calibration) 36
3.2.4 刮痕方程式編輯 38
3.2.5 實驗時須注意事項 40
3.3.6 磨耗特性之導出量 40
3.2.7 刮痕實驗步驟 42
3.3 表面輪廓儀量測系統 42
3.3.1 實驗儀器與架構 42
3.3.2 探針特性 44
3.3.3 實驗時須注意事項 45
3.3.4 薄膜厚度量測步驟 45
第四章 實驗結果與討論 46
4.1 薄膜厚度分析 46
4.2 機械性質之分析 53
4.2.1 奈米壓痕量測系統之實驗結果 53
4.2.2 基材楊氏係數與硬度值分析 55
4.2.3 單層薄膜楊氏係數與硬度值分析 55
4.2.4 雙層薄膜楊氏係數與硬度值分析 60
4.2.5 不同膜厚的綜合比較分析 64
4.2.6 不同類型材料的綜合比較分析 71
4.3 磨耗特性之分析 73
4.3.1 奈米刮痕量測系統之實驗結果 73
4.3.2 基材的磨耗特性分析 75
4.3.3 單層薄膜的磨耗特性分析 79
4.3.4 雙層薄膜的磨耗特性分析 96
4.3.5 不同類型材料的磨耗特性分析 111
第五章 結論 119
參考文獻 125
[1]Arthur J.R., and Lepore J.J., 1969, GaAs, GaP, and GaAsxP1–x epitaxial films grown by molecular beam deposition, Journal of Vacuum Science and Technology, Volume 6, pp. 545~548.
[2]Hertz H., 1882, On the contact of elastic solids., Journal für die reine und angewandte Mathematik, Vol. 92, pp. 156~171.
[3]Boussinesq J., 1885, Applications des potentials a I’etude de I’equilibre et du mouvement de solides elastiques, Gauthier- Villars, Paris.
[4]Tabor D., 1948, A simple theory of static and dynamic hardness, Proceedings of the Royal Society of Edinburgh A192, pp. 247~273.
[5]Lepienski C.M., Pharr G. M., Park Y. J., Watkins T. R., Misra A. and Zhang X., 2004, Factors limiting the measurement of residual stresses in thin films by nanoindentation, Thin Solid Films 447-448, pp. 251~257.
[6]Bouzakis K.D., Bouzakis K.D., Michailidis N.,and Erkens G., 2001, Thin hard coatings stress-strain curve determination through a FEM supported evaluation of nanoindentation test results, Surface and Coatings Technology 142-144, pp. 102~109.
[7]魏悅慶、王學峰、武曉雷, 2000, 微壓痕尺度效應的理論和實驗,中國科學(A輯)30, pp. 1026~1032。
[8]Gao H., et al, 1999, Mechanism-based strain gradient plasticity-I. Theory, Journal of the Mechanics and Physics of Solids 47, pp. 1239~1263.
[9]Niordson C.F., and Hutchinson J.W., 2002, On lower order strain gradient plasticity theories, European Journal of Mechanics A/Solids 22, pp. 771~778.
[10]Sneddon I.N., 1965, The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile, International Journal of Engineering Science 3, pp. 47~57.
[11]Pharr G.M., Oliver W.C., and Brotzen F.R., 1992, On the generality of therelationship among contact stiffness contact area and elastic modulus during indentation, Journal of Materials Research, 7, pp. 613~617.
[12]Sharpe W.N., Yuan Jr.B., and Vaidyanathan R., 1997, Measurements of Young’s modulus, Poisson’s ratio, and tensile strength of polysilicon, IEEE Micro Electro Mechanical Systems, Nagoya, Japan, pp. 420~430.
[13]Ogawa H., Ishikawa Y., and Kitahara T., 1996, Measurements of stress-strain diagrams of thin films by a developed tensile machine, SPIE, Microlithography and Metrology in Micromachining II, Austin, TX, pp. 270~280.
[14]Ogawa H., Suzuki K., Kaneko, Ishikawa Y., and Kitahara T., 1997, Measurements of Mechanical properties of microfabricated thin films, IEEE, Micro Electro MechanicalSystems, Nagoya, Japan, pp. 430~440.
[15]Tsuchiya T., Tabata O., Sakata J., and Taga Y., 1998, Specimen size effect on tensilestrength of surface-micromachined polycrystalline silicon thin films, Journal of Microelectromechanical systems, pp. 610~620.
[16]Maier-Schneider J., Maibach J., Obermeier E., and Schneider D., 1995, Variations in Young`s modulus and intrinsic stress of LPCVD-polysilicon due to high temperature annealing, Journal of Micromechanics and Microengineering, 5 ,pp. 121~124.
[17]Li Y. and Cima M.J. 2004, Bulge test on free standing gold thin films, Materials Research Society Symposium Proc, Vol. 795, pp.1031~1036.
[18]Paviot V.M., Vlassak J.J., and Nix W.D., 1995, Measuring the mechanical properties of thin metal films by means of bulge testing of micromachined windows, Materials Research society Symposium Proc, 356, pp. 579~584.
[19]Tabata O., Kawahata K., Sugiyama S. and Igaraashi I., 1989, Mechanical property measurements of thin films, Sensors and Actuators A, 20, pp. 135~145.
[20]Tabata O., Tsuchiya T. and Fujitsuka N., 1994, Poisson’s ratio evalution of thin films for sensor application, Technical Digest of the 12th Sensor Symposium, pp. 15~25.
[21]Petersen K.E., and Guarnieri C.R., 1979, Young`s modulus measurements of thin films using micromechanics, Jouranal of applied physics, 50, pp. 6761~6766.
[22]Kiesewetter L., et al, 1992, Determination of Young's moduli of micromechanical thin films using the resonance method, Sensors and Actuators A, 35, pp. 153~159.
[23]Weihs T.P., Hong S., Bravman J.C., and Nix W.D., 1988, Mechanical deflection of antilever microbeams: A new technique for testing the mechanical properties of thin films, Journal of Materials Research 3, pp. 931~942.
[24]Weihs T.P., Hong S., Bravman J.C., and Nix W.D., 1989, Measuring the strength and stiffness of thin film materials by mechanically deflecting cantilever microbeams, Thin Films: Stresses and Mechanical Properties, Symposium Proc. Pittsburgh, PA, pp. 87~92.
[25]Nix W.D., 1989, Mechanical Properties of Thin Films, Metallurgical Transaction A, 20A, pp. 2217~2245.
[26]Johansson S., Schweitz J.A., Tenerzand L. J. tiren, 1988, Fracture testing of silicon microelements in situ in a Scanning Electron Microscope, Journal of Applied Physics 66, pp. 130~140.
[27]Serre C., Gorostiza P., Perez A., Sanz F., and Morante J., 1998, Measurement of micromechanical properties of polysilicon microstructures with an atomic force microscope, Sensors and Actuators A, Vol. 57, pp. 215~219.
[28]Serre C., Perez A., Morante J., Gorostiza P., and Esteve J., 1999, Determination of micromechanical properties of thin films by beam bending measurements with an atomic force microscope, Sensors and Actuators A, Vol. 74, pp. 134~138.
[29]Brinell, J. A., 1901, M’emoire sur les ‘epreuves ‘a bille en acier, International des M’ethodes d’Essai des Mat’eriaus de Construction 2, Paris, pp. 83~94.
[30]Shih, C.W., Yang M., and Li J.C.M., 1991, Effect of tip radiuson nanoindentation, Journal of Materials Research, Vol. 6, pp. 2623~2628.
[31]Pharr G.M., and Oliver W.C., 1992, Measurement of thin film mechanical properties using nanoindentation, MRS Bulltin 7, pp. 28~33.
[32]Oliver W.C., and Pharr G.M., 2004, Measurement of hardness amd elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology, Journal of Materials Research 19, pp. 9~20.
[33]Oliver W.C., and Pethica J.B., 1989, Methods for continuous determination of the elastic stiffness of contact between two bodies, U.S. Patent No. 4,848.
[34]Chudoba T., Griepentrog M., Duck A., Schneider D., and Richter F., 2004, Young’s modulus measurements on ultra-thin coatings, Journal of Materials Research 19, pp. 301~314.
[35]Taylor C.A., Wayne M.F., and Chiu WK.S., 2003, Residual stress measurement in thin carbon films by Raman spectroscopy and nanoindentation, Thin Solid Films 429, pp 190~200.
[36]Doerner M.F., Gardner D.S., and Nix W.D., 1986, Plastic properties of thin films on substrates as measured by submicron indentation hardness and substrate curvature techniques, Journal of Materials Research 1, pp. 845~851.
[37]Doerner M.F., and Nix W.D., 1986, A method for interpreting the data from depth-Sensing indentation instruments, Journal of Materials Research 1, pp. 601~609.
[38]Volinsky A.A., Vella J.B., and Gerberich W.W., 2003, Fracture toughness, adhesion and mechanical properties of low-K dielectric thin films measured by nanoindentation, Thin Solid Films 429, pp. 201~210.
[39]丁志華、管正平、黃新言、戴寶通,米壓痕量測系統簡介,奈米通訊第九卷第三期, pp. 4~10.
[40]施孟君, 2002, 合金及薄膜之奈米壓痕量測, 國立清華大學材料科學工程學系碩士論文。
[41]何恕德, 2003, 以導電性原子力顯微術研究矽在奈米壓痕下之相變化行為,國立清華大學材料科學工程學系碩士論文。
[42]Oliver W.C., and Pharr G.M.,1992, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, Journal of Materials Research, Vol. 7 No.6, pp.1564~1583.
[43]Hysitron, TriboScope user manual, Hysitron, 2002.
[44]Baker S.P., 1997, Between nanoindentation and scanning force microscopy: Measuring mechanical properties in the nanometer regime, Thin Solid Films 308~309, pp. 289~296.
[45]Bobij M.S. and Biswas S.K., 1998, Estimation of hardness by nanoindentaton of rough surfaces, Journal of Material Research 13, pp. 3227~3233.
[46]Lepienski C.M., Pharr G.M., Park Y.J., Watkins T.R., Misra A. and Zhang X., 2004, Factors limiting the measurement of residual stresses in thin films by nanoindentation, Thin Solid Films 447~448, pp. 251~257.
[47]Bhushan B., 1999, Handbook of micro/nanotribology, 2nd ed, CRC Press, BocaRaton.
[48]McElhaney K.W., Vlassak J.J. and Nix W.D., 1997, Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments, Journal of Materials Research 13, No. 5, pp. 1300~1306.
[49]Pharr G.M., 1998, Measurement of mechanical properties by ultra-low load indentation, Maerials Science and Engineering A253, pp. 151~159.
[50]Bolshakov A. and Pharr G.M., 1998, Influence of pile-up on the measurement of mechanical properties by load and depth sensing indentation techniques, Journal of Materials Research 13, pp. 1049~1058.
[51]Giannakopoulos A.E. and Suresh S., 1999, Determination of elastic-plastic properties by instrumented sharp indentation, Scripta Materiala 40, No. 10, pp. 1191~1198.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top