跳到主要內容

臺灣博碩士論文加值系統

(3.235.227.117) 您好!臺灣時間:2021/07/28 03:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:袁贊修
研究生(外文):Tsan-Hsiu Yuan
論文名稱:三自由度氣壓肌肉機械臂之追蹤控制
論文名稱(外文):Tracking Control of a Three Degrees of Freedom Mechanical Arm Actuated by Pneumatic Muscle Actuators
指導教授:張銘崑
指導教授(外文):Ming-Kun Chang
學位類別:碩士
校院名稱:聖約翰科技大學
系所名稱:自動化及機電整合研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:193
中文關鍵詞:氣壓肌肉驅動器模糊滑動模式控制器適應自組織模糊滑動模式控制器
外文關鍵詞:pneumatic muscle actuatorsadaptive self-organizing fuzzy sliding mode controllerfuzzy sliding mode controller
相關次數:
  • 被引用被引用:5
  • 點閱點閱:335
  • 評分評分:
  • 下載下載:137
  • 收藏至我的研究室書目清單書目收藏:0
本研究採用六根氣壓肌肉驅動器構成三個轉動關節的三自由度氣壓肌肉機械臂當作復健機器人,由於人工氣壓肌肉系統皆為一高階非線性系統,故選用能處理複雜且不需導出真實數學模式的智慧型控制器以應用在此系統。
本文採用模糊滑動模式控制器(FSMC)及適應自組織模糊滑動模式控制器(ASOFSMC)兩種智慧型控制器,進行肩部、肘關節及腕關節的角度控制及手臂末端位置的追蹤控制。適應自組織模糊順滑模式控制器除了具有傳統模糊控制器外,還擁有語意式學習機構以修改模糊規則表,藉著模糊順滑平面的技巧減少比例因子及模糊規則的數量,以適應性控制法則線上調整比例因子。從實驗結果證明適應自組織模糊滑動模式控制器具有良好的追蹤控制性能。
In this study, the three degrees of freedom mechanical arm actuated by six pneumatic muscle actuators is used as a rehabilitation robot. It is difficult to achieve high control accuracy using classical control method, because the compressibility of gas and the nonlinear elasticity of bladder container caused parameter variation.
We use two intelligent controllers to implement angle control and end-effector tracking control. The linguistic approach learning mechanism is used to modify on-line fuzzy rules and the fuzzy sliding surface can reduce fuzzy sets. And then the adaptive law is used to adjust scaling factor. The experimental results show that adaptive self-organizing fuzzy sliding mode controller can attain excellently tracking control performance .
中文摘要-------------------------------------------------------- I
Abstract------------------------------------------------------- II
誌謝------------------------------------------------------------ III
目錄------------------------------------------------------------ IV
圖目錄---------------------------------------------------------- VII
表目錄---------------------------------------------------------- XII
第一章 緒論------------------------------------------------------ 1
1.1 前言------------------------------------------------------ 1
1.2 文獻回顧-------------------------------------------------- 3
1.3 論文架構-------------------------------------------------- 5
第二章 系統架構與數學模式----------------------------------------- 6
2.1 系統架---------------------------------------------------- 6
2.1.1 氣壓肌肉---------------------------------------------- 7
2.1.2 壓力比例閥-------------------------------------------- 8
2.1.3 旋轉式電位計------------------------------------------ 8
2.1.4 AIO3320介面卡----------------------------------------- 9
2.1.5 AIO3384介面卡----------------------------------------- 9
2.2 氣壓肌肉特性分析------------------------------------------- 10
2.3 三自由度機械臂動態方程式------------------------------------ 11
2.4 三自由度機械臂運動學---------------------------------------- 15
2.4.1 順向運動學--------------------------------------------- 16
2.4.2 逆向運動學--------------------------------------------- 19
2.5 三自由度機械臂工作空間-------------------------------------- 20
2.6 路徑規畫-------------------------------------------------- 21
2.6.1 二自由度軌跡路徑(θ1,θ2)-------------------------------- 21
2.6.2 三自由度軌跡路徑(θ1,θ2,θ3)----------------------------- 25
第三章 控制理論-------------------------------------------------- 30
3.1 模糊邏輯控制理論------------------------------------------- 30
3.1.1 定義變數---------------------------------------------- 32
3.1.2 模糊化介面--------------------------------------------- 32
3.1.3 知識庫------------------------------------------------ 34
3.1.4 決策邏輯---------------------------------------------- 34
3.1.5 解模糊化介面------------------------------------------- 35
3.2 滑動模式控制理論------------------------------------------- 36
3.2.1 可變結構控制------------------------------------------- 36
3.2.2 滑動模式控制原理--------------------------------------- 37
3.3 模糊滑動模式控制理論---------------------------------------- 39
3.4 自組織模糊滑動模式控制理論----------------------------------- 41
3.4.1 自組織學習機構----------------------------------------- 41
3.5 適應自組織模糊滑動模式控制理論------------------------------- 44
3.5.1 適應控制---------------------------------------------- 44
3.5.2 穩定性分析--------------------------------------------- 45
第四章 實驗研究-------------------------------------------------- 47
4.1 三自由度角度追蹤控制---------------------------------------- 47
4.1.1 模糊滑動模式控制器(FSMC)之實驗結果----------------------- 47
4.1.2 適應自組織模糊滑動模式控制器(ASOFSMC)之實驗結果----------- 57
4.1.3 小結-------------------------------------------------- 77
4.2 三自由度末端軌跡追蹤控制(θ1,θ2,θ3)-------------------------- 78
4.2.1 模糊滑動模式控制器(FSMC)之實驗結果----------------------- 79
4.2.2 適應自組織模糊滑動模式控制器(ASOFSMC)之實驗結果----------- 97
4.2.3 小結-------------------------------------------------- 131
第五章 結論與建議------------------------------------------------- 132
5.1 結論------------------------------------------------------ 132
5.2 建議------------------------------------------------------ 133
參考文獻 -------------------------------------------------------- 134
附錄A ---------------------------------------------------------- 137
A.1 模糊滑動模式控制器(FSMC)之實驗結果--------------------------- 137
A.2 適應自組織模糊滑動模式控制器(ASOFSMC)之實驗結果--------------- 139
A.3 小結------------------------------------------------------ 143
附錄B ---------------------------------------------------------- 144
B.1 二自由度末端軌跡追蹤控制(θ1,θ2)----------------------------- 144
B.1.1 模糊滑動模式控制器(FSMC)之實驗結果----------------------- 144
B.1.2 適應自組織模糊滑動模式控制器(ASOFSMC)之實驗結果----------- 162
B.1.3 小結-------------------------------------------------- 192
作者簡介 -------------------------------------------------------- 193
[1]D. G. Caldwell, G. A. Medrano-Cerda, and M. Goodwin, “Control of
pneumatic muscle actuators”, IEEE Control Syst. Mag., pp. 40-48,
Feb. 1995.
[2]C. P. Chou, and B. Hannaford, “Static and Dynamic Characteristics
of Mckibben Pneumatic Artificial Muscles”, IEEE International
Conference on Robotics and Automation, 1994.
[3]C. P. Chou, and B. Hannaford, “Measurement and Modeling of
Mckibben Pneumatic Artificial Muscle”, IEEE Transactions on
Robotics and Automation, 12(1): 90~102, 1996.
[4]H. F. Schulte, “The Characteristics of the McKibben Artificial
Pneumatic Muscle”, The Proceedings of the Application of
External Power in Prostherics and Orthotics Conference, Appendix
H. Publ. 874, National Academy of Sciences, Washington, DC. pp.
94-115, 1961.
[5]G. K. Klute, J. M. Czemiecki, and B. Hannaford, “Mckibben
Artificial Muscle: Pneumatic Actuators with Biomechanical
Intelligence”, IEEE Conference on Advanced Intelligent
Mechatronics, 1999.
[6]S. D. Prior and A. S. White, “Measurement and simulation of a
pneumatic muscle actuator for a rehabilitation robot.” Simulation
Practice and Theon, Vol.3, pp.81-117,1995.
[7]T. Noritsugu, and T. Tanaka. “Application of rubber artificial
muscle manipulator as a rehabilitation robot,” IEEE/ ASME Trans.
Mechatron ., Vol.2. pp. 259-267, Dec. 1997.
[8]D.G. Caldwell, N. Tsagarakis, G. A. Medrano-Cerda, J. Schofield.
and S. Brown. “A pneumatic muscle actuator driven manipulator for
nuclear waste retrieval.” Control Engineering Practice,
Vol.9.pp.23-36, 2001.
[9]T. Yamanaka, T. Noritsugu, T. Tanaka, “Application of Rubber
Artificial Muscle Manipulator as a Rehabilitation Robot.” IEEE
International Workshop on Robot and Human Communication, 1996.
[10]B. W. McDonell and J. E. Bobrow, “Adaptive Tracking Control of
an Air Powered Robot Actuator”, Trans.of the ASME, Journal of
Dynamic Systems, Measurememt and Control, Vol. 115, No. 3, pp.
427-433, Spet. 1993.
[11]J. Lilly, “Adaptive Tracking for Pneumatic Muscle Actuators in
Bicep and Tricep Configurations,” IEEE Transactions on Neural
System and Rehabilitation Engineering, Vol. 11, No. 3, pp. 333-
339, 2003.
[12]G. A. Medrano-Cerda, C. J. Bowler, and D. G. Caldwell, “Adaptive
Position Control of Antagonistic Pneumatic Muscle Actuators”, in
Proc. IEEE Int. Conf. Intelligent Robots Systems, vol. 1, pp.
378-383, 1995.
[13]P. Carbonell, Z. P. Jiang, and D. W. Repperger, “A fuzzy
backstepping controller for a pneumatic muscle actuator system,”
in Proc. IEEE Int. Symp. Intelligent Control, Mexico City,
Mexico, pp. 353–358, 2001.
[14]S. W. Chan, J. Lilly, D. W. Repperger, and J. E. Berlin, “Fuzzy
PD+I learning control for a pneumatic muscle,” in Proc. 2003
IEEE Int. Conf. Fuzzy Systems, St. Louis, MO, pp. 278–283, 2003.
[15]J. Lilly and P. M. Quesada, “A Two-Input Sliding-Mode Controller
for a Planar Arm Actuated by Four Pneumatic Muscle Groups”, IEEE
Trans. Neural Systems and Rehabilitation Engineering. Vol. 12,
pp. 349-359, 2004.
[16]J. Lilly and Yang Liang, “Sliding Mode Tracking for Pneumatic
Muscle Actuators in Opposing Pair Configuration”, IEEE Control
Syst. Mag., Vol. 13, pp. 550-558, 2005.
[17]T. H., J. H. Nie, and M. W. Lee, “A Fuzzy Controller with
Decoupling for Mulitivariable Nonlinear Servomechanisms, with
Application to Real-Time Control of a Passive Line-of-Sight
Stabilization System”, Mechatronics, Vol. 7, No. 1, pp. 83-104,
1997.
[18]S. Shibata, M. S. Ben-lamine, K. Toyohara and A. Shimizu, “Fuzzy
Control of Vertical Pneumatic Servo System Using Virtual
Reference”, JSME International Journal of Science C, Dynamic
Control for Robotics Design and Manufacturing, Vol. 42, No. 1,
pp. 79-84, 1999.
[19]陳芳雄,“機械手臂之非線性遞回步階控制設計”,碩士論文,暨南國際大學,電機
工程學系,2004。
[20]熊有倫、劉思論,“機器人學”,五南出版社,1993.
[21]L. A. Zadeh, “Fuzzy Sets ”, Information and Control, vol. 8,
pp. 338-353, 1965.
[22]E. H. Mamdani, “Application of Fuzzy Algorithms for Simple
Dynamic Plant,” Proceedings of Inst. Elect. Eng., vol. D.-121,
pp. 1585-1588, 1974.
[23]陳永平,“可變結構控制設計”,全華科技出版社,1999.
[24]Procky, T. J. and E. H. Mamdani, “Alinguistic Self-Organizing
Process Controller”, Automatica, Vol.5, pp.15-30,1979.
[25]Shao, Shihuang, “Fuzzy self-organizing controller and its
application for dynamic processes”, Fuzzy Sets and System,
Vol.26, pp.151-164, 1988.
[26]Fei-Lung Yang, Mao-Hsiung Chiang, Jen-Hwa Guo, Tsong-Neng Wu,
Yih-Nan Chen, Yi-Chen Yeh, “Study on Force Control and Load-
Sensing Control of a Hydraulic Valve-Controlled Cylinder System
with Decoupling Self-Organizing Fuzzy Sliding-Mode Controller”,
Bulletin of the College of Engineering, N. T. U., No. 92,
October 2004, pp. 57-70.
[27]Ying-Tsai Wang and Ming-kun Chang, “Experimental Implementaions
of Decoupling Self-Organizing Fuzzy Control to a TITO Pneumatic
Force Control System”, Jorunal of the Chinese Society of
Mechanical Engineerings, Vol.20, No. 6, pp.535-542, 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top