跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/07/30 03:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:沈澄輝
研究生(外文):Cheng-Huei Shen
論文名稱:SUS304不銹鋼板材溫間引伸成形與變形誘發麻田散鐵變態之研究
論文名稱(外文):Research of Warm Deep Drawing of SUS304 Stainless Steel Sheets and Deformation Induced Martensite Transformation
指導教授:黃庭彬
學位類別:碩士
校院名稱:聖約翰科技大學
系所名稱:自動化及機電整合研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:94
中文關鍵詞:變形誘發麻田散鐵
外文關鍵詞:有限元素極限引伸比
相關次數:
  • 被引用被引用:2
  • 點閱點閱:752
  • 評分評分:
  • 下載下載:123
  • 收藏至我的研究室書目清單書目收藏:0
SUS304不銹鋼具有優越的耐蝕性、耐熱性、低溫強度、與低溫衝擊韌性,所以SUS304 佔所有不銹鋼使用量的一半以上,而且因為其引伸成形性優異,不銹鋼引伸成形件更是以SUS304為主。而SUS304為準安定之沃斯田鐵,在Md溫度以下如果受到外力產生塑性變形,會引發其產生變形誘發麻田散鐵變態,形成麻田散鐵。本文以熱耦合有限元素分析模擬SUS304不銹鋼板材之溫間引伸成形製程,預測不同引伸溫度之破裂位置、極限引伸比、引伸荷重,並以實驗分析驗證有限元素之模擬結果。最後以X-ray繞射定量分析成形後麻田散鐵性的變態量,以探討成形溫度與變形量對變形誘發麻田散鐵變態的影響。
Due to the corrosion resistance, thermal resistance, low temperature strength and toughness, 304 stainless steel is the most widely used stainless steel type. Type 304 stainless steel has good drawability that has made it dominate in the manufacture of deep drawn stainless steel parts. Type 304 stainless steel is a meta-stable austenite. It will transform to martensite by plastic deformation because of deformation induced martensite transformation. In this study non-isothermal finite element method is used to simulae the warm deep drawing of stainless steel. Limit drawing ration, facture position and drawing load. Non-isothermal deep drawing experiments are performed to validate the finite element analysis results. Quantitative analysis of X-ray diffraction is used to measure the volume fraction of martensite phase after deep drawing, and to investigate the effect of deep drawing temperature and drawing ratio on the deformation induced martensite transformation.
論文目錄
中文摘要.................................................................. I
英文摘要.................................................................. II
誌謝...................................................................... III
目錄..................................................................... IV
圖目錄................................................................... VII
表目錄................................................................... XI
第一章 緒論............................................................... 1
1-1 前言................................................................ 1
1-2 研究動機與目的...................................................... 2
1-3 文獻回顧............................................................ 3
1-4 研究方法與步驟...................................................... 5
1-5 論文總覽............................................................ 5

第二章 不銹鋼之引伸成形................................................... 7
2-1 不銹鋼特性與分類.................................................... 7
2-2 SUS304不銹鋼板材的成形性............................................ 8
2-2-1 SUS304 不銹鋼板材應力應變曲線與伸長率........................... 9
2-2-2 SUS304 不銹鋼板材之成形極限圖................................... 9
2-3 溫間引伸成形....................................................... 10

第三章 實驗設備及方法.................................................... 15
3-1 實驗材料........................................................... 15
3-2 完全退火與製程退火................................................. 15
3-3 非恆溫圓筒引伸實驗................................................. 16
3-3-1 圓筒引伸與極限引伸比........................................... 16
3-3-2 實驗設備....................................................... 17
3-3-3 非恆溫引伸模具設計............................................. 18
3-3-4 非恆溫引伸實驗參數及流程....................................... 20
3-4 試片切割........................................................... 21
3-5 .XRD繞射實驗....................................................... 21
3-5-1 定性分析........................................................ 21
3-5-2 定量相分析...................................................... 22
3-6 厚度量測........................................................... 25
3-7 微硬度實驗......................................................... 25

第四章 溫間引伸有限元素法分析............................................ 41
4-1 引伸模擬模型之建立................................................. 41
4-2 材料參數之定義..................................................... 42
4-3 邊界條件之定義..................................................... 42
4-4 其他條件........................................................... 43

第五章 結果與討論........................................................ 47
5-1 極限引伸比......................................................... 47
5-1-1 極限引伸比與模具之關係......................................... 47
5-2 沖頭引伸力......................................................... 48
5-2-1 引伸力與板材尺寸之關係......................................... 48
5-2-2 引伸力與成形溫度之關係......................................... 49
5-2-3 引伸力與壓料力之關係........................................... 49


5-3 圓筒厚度分佈....................................................... 50
5-3-1 圓筒成形之厚度分佈............................................. 50
5-3-2 圓筒成形之破裂位置............................................. 50
5-4 溫度變化........................................................... 51
5-4-1 圓筒引伸成形之溫度分佈......................................... 51
5-4-2 圓筒引伸成形之溫度變化......................................... 51
5-5 XRD分析........................................................... 52
5-6 圓筒硬度分佈....................................................... 53

第六章 結論與未來方向.................................................... 89
6-1 結論............................................................... 89
6-2 未來研究所方向..................................................... 90

參考文獻................................................................. 91

作者簡介................................................................. 94
參考文獻
[1] Hong Chul Shin, Tae Know Ha, and Young Won Chang, “Kinetics of deformation induced martensitic transformation in a 304 stainless steel”, Scripta Materialia 45,,2001, pp.823-829.
[2] T. Angel, “J. Iron Steel Inst.”, Vol.177, 1954, pp.165-174.
[3] P. L. Mangonon, JR, and G. Tomas, “Structure and Properties of Thermal- Mechanicall Treated 304 stainless stain”, Metallurgical Transactions, Vol.1(1970), pp. 1587-1594
[4] C. P. Livitsanos and P. F. Thomson,“The Effect of Temperature and Deformation Rate on Transformation-Dependent Ductility of a Metastable Austenitic Steel”,Materials Science and Engineering,Vol. 30(1977),pp. 93-98.
[5] N. Kawai, H. Saili and H. Hirate, “Improvement of Stretchability of 18-8 Stainless steel Sheets due to Strian Induced Transformation”, 塑性と加工, Vol. 17(1976), pp. 899-906
[6] J. S. Chang, S. S. Chou, “Effect of Temperature Gradient in a Blank on the Microstructure of Type 304 Stainless Steel in Square-Shaped Deep Drawing”, Materials Transaction, JIM, Vol. 37(1996), pp. 586-594
[7] 黃庭彬,“鎂合金與不銹鋼板材溫間成形特性之研究”台灣大學機械工程學研究所博士論文,92年7月。
[8] J. S. Chang and S. S. Chou,“Effect of Temperature Gradient in a Blank on the Microstructure of Type 304 Stainless Steel in Square-Shaped Deep Drawing”,Metallurgical Transaction,Vol.37,No.4 (1996),pp. 586-594.

[9] H. Palaniswamy, G. Ngaile and T. Altan, “Finite Element Simulation of Mangnesium Alloy sheet Forming at Elevated Temperatures”, Journal of Materials Processing Technology, Vol. 146(2004), pp. 52-60
[10] Fuh-Kuo Chen, Tyng-Bin Huang and Chih-Kun Chang, “Deep Drawing of Square Cups with Magnesium Alloy AZ31 Sheets”, International Journal of Machine Tool & Manufacture, 43(2003), pp. 1553-1559
[11] H. Takuda, K. Mori, I. Masuda, Y. Abe and M. Matsuo, “Finite Element Simulation of Warm Deep Drawing of Aluminium Alloy Sheet when Accounting for Heat Conduction
[12] Tyng-Bin Huang, Yung-An Tsai and Fuh- Kuo Chen, “Finite Element Analysis and Formability of Non-isothermail Deep Drawing of AZ31 Sheets
[13] K. Shinagawa, K. I. Mori and K. Osakada, “Finite Element Simulation of Stainless Steel Sheet with Deformation-induced Transformation”, Journal of Materials Processing Technology, Vol. 27(1991), pp. 301-310
[14] H. Takuda, K. Mori, T. Masachika, E. Yamazaki and Y. Watanabe, “Finite Element Analysis and Formability of an Austenitic Stainless Steel Sheet in Warm Deep Drawing”, Journal of Materials Processing Technology, Vol. 143-144(2003), pp. 242-248
[15] 黃志豪,“常溫及溫間引伸加工問題之有限元素分析”,國立中央大學機械工程研究所碩士論文,92年6月。
[16] R. H. Wagoner,S. Latreille,J.L. Siles and Yong H. Kim,“Nonisothermal Punch Stretching: Measurements and Finite Element Modeling Simulations”,Metallurgical Transactions,Vol. 22A(1991),pp. 3003-3011.
[17] K. Shinagawa,K. I. Mori and K. Osakada,“Finite Element Simulation of Deep Drawing of Stainless Steel Sheet with Deformation-Induced Transformation”,Journal of Material Processing Technology,Vol.27(1991),pp. 301-310.
[18] H. Takuda, K. Mori,I. Masuda,Y. Abe and M. Matsuo,“Finite Element Simulation of Warm Deep Drawing of Aluminium Alloy Sheet when Accounting for Heat Conduction”,Journal of Material Technology,Vol. 120(2002),pp. 412-418.
[19] Z. Zimniak,“Implementation of the Forming Limit Stress Diagram in FEM Simulations”,Journal of Materials Processing Technology,Vol.106(2000),pp.261~266.
[20] Li-Ping Lei,Sang-Moon Hwang and Beom-Soo Kang,“Finite Element Analysis and Design in Stainless Steel Sheet Forming and its Experimental Comparison”,Journal of Materials Processing Technology,Vol.110(2001),pp.70~77.
[21] Forming and Forging”, Vol.14, 9th Ed. , Metals Handbook, American Society for Metals, 1988.
[22] D. R. Askeland and P. P. Phule’, “The Science and Engineering of Materials”, 4th Ed., Thomson Learning, 2003.
[23] B. D. Cullity and S. R. Stock, “Elements of X-ray Diffraction”, 3rd Ed., Prentice Hall, 2001.
[24] S. Kobayashi, S. I. Oh, and T. Altan, “Metal Forming and the Finite Element Method”, Oxford University Press, 1989.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top