(3.231.29.122) 您好!臺灣時間:2021/02/26 01:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張振明
研究生(外文):Chang , Chen Ming
論文名稱:類神經網路應用於室內通道定位之研究
論文名稱(外文):The Research of Artificial Neural Network for Indoor Walkway Location
指導教授:吳鴻志吳鴻志引用關係
指導教授(外文):Wu , Hung Chih
學位類別:碩士
校院名稱:樹德科技大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:95
語文別:中文
論文頁數:50
中文關鍵詞:無線感測網路訊號強度徑向基類神經網路倒傳遞類神經網路
外文關鍵詞:Wireless Sensor Network (WSN)Received Signal Strength Indicator (RSSI)Generalized Recurrent Neural Network(GRNN)Back-Propa
相關次數:
  • 被引用被引用:0
  • 點閱點閱:966
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來有許多的技術陸續以使用者定位技術來發展,而無線感測器網路就是其中一種,無線感測器網路(Wireless Sensor Networks,WSN)具備低成本、低耗電、小體積、容易佈建,並可程式化、可動態組成等特性。本論文是根據實地量測資料以徑向基-廣義迴歸類神經網路(GRNN)及倒傳遞類神經網路(BPN)建立室內通道電場強度並結合電腦作精密定位的控制,行動端將測量各基地台的訊號強度值(RSSI),並使用類神經網路的演算法和訊號強度(RSSI)進行訊號偏移分析,而在克服(RSSI)訊號變化上本論文模擬狀況為1個基地台訊號變化為5%時,徑向基-廣義迴歸類神經網路(GRNN)均方根誤差是0.40,命中率約85%,倒傳遞類神經網路(BPN)經訓練收斂至 ,均方根誤差是1.26,命中率約43%。實驗結果顯示徑向基-廣義迴歸類神經網路(GRNN)來進行室內定位工作,相較於倒傳遞類神經網路(BPN),可於(WSN)訊號發生偏移時可獲得良好定位效果,兼具定位系統可靠性與降低系統建置所需的人力與時間成本。
In recent years, numerous technologies have been successively developing based on positioning technology, and wireless sensor network (WSN) is one of them. Wireless Sensor Network features low cost, low power consumption, compact, easy deployment, as well as programmable and capability of dynamic composition etc.
This study has built an indoor channel of electric field intensity integrated with computers for accurate positioning control with Generalized Recurrent Neural Network (GRNN) and Back-Propagation Neural Network (BPN) according to the practically measured data. The mobile-end will collect the Received Signal Strength Indicator (RSSI) of each base station for analyzing the signals deviation. On the other hand, the study simulated in overcoming the RSSI signals variation as: when a given base station with its signals variation at 5%, the Root Mean Square Error of GRNN is 0.40, the hit rate is approx. 85%; while BPN converged to 10-25, the Root Mean Square Error is 1.26, and hit rate approx. at 43%.
Results showed that by using GRNN, instead of BPN, the better positioning effect can be obtained when WSN signals shifted, which will enhance the reliability of the positioning system and reduce the manpower and time cost as required for system deployment.
目 錄
摘要.............................................................. I
Abstract..........................................................II
誌謝..............................................................III
目 錄.............................................................IV
圖 目 錄...........................................................VI
表 目 錄..........................................................VIII
第一章、緒論........................................................1
1.1 研究背景........................................................1
1.2 研究動機與目的............................... ...................2
1.3 研究方法........................................................2
1.4 其他章節說明.....................................................2
第二章、類神經網路....................................................4
2.1 前言............................................................4
2.2 生物神經元與人工神經元............................................5
2.3 類神經網路分類...................................................6
2.4 倒傳遞演算法.....................................................7
2.5 廣義迴歸類神經網路...............................................10
2.6 類神經網路應用評估...............................................12
第三章 無線感測器網路與定位理論........................................16
3.1 無線感測器網路發展沿革............................................16
3.2 無線感測器網路規格................................................17
3.2.1 無線感測器硬體構造及功能........................................18
3.2.2 資料傳輸模式...................................................21
3.3 定位理論探討.....................................................22
第四章 室內通道定位系統架構及運作原理...................................24
4.1 系統架構........................................................24
4.2 訊號強度測試....................................................25
4.3 定位技術的使用...................................................27
4.4 類神經網路訓練及測試建立..........................................27
4.5 決定量測點......................................................28
4.6 建置資料庫......................................................30
第五章 研究結果與效能分析.............................................32
5.1 測試點建立之方法和程序............................................32
5.1.1 測試點建置及量測...............................................32
5.1.2 定位資料庫及數學模型資料庫......................................34
5.2 場地定位實測....................................................34
5.3 訊號強度的定位與推估.............................................34
5.3.1 類神經網路....................................................34
5.3.2廣義迴歸類神經網路的研究結果與效能分析.............................35
5.3.3 倒傳遞類神經網路的研究結果與效能分析..............................41
第六章 結論與未來工作.................................................49
6.1 未來工作........................................................49
6.2 結論............................................................49
參考文獻............................................................50
[1]羅華強,類神經網路-Matlab的應用,清蔚科技,新竹市,2001。
[2]黃美玲、陳幸宜、陳貴琳、李雅雯,類神經網路輔助醫療診斷分類模式之建構,國立勤益技術學院工業工程與管理學系,中國醫藥大學眼科部,2006。
[3]葉怡成,類神經網路模式應用與實作,儒林書局,台北,2000。
[4]莊鎮嘉、鄭錦聰,MATLAB 程式設計實務,全華科技圖書,2006。
[5]羅華強,類神經網路-MATLAB的應用,高立圖書,2005。
[6]H.A.Karimi and Xiong Liu, A Predictive location Model for Location-Based services,n3rd Int. conference on Geographic Information Science(GIS’03),New Orleans,USA,November,2003.
[7]D.O.Hebb, The Organization of Behavior:Neuropsychological Theory, Wiley, New York 1949.
[8]D.Rumelhart,G.Hinton,R.Williams, In Parallel Distributed Processing, MIT Press Cambridge, MA, 1986.
[9]T.Hagan,H.Demuth,M.Beale, Neural Network Design, Boston MA, 1996.
[10]I.Abnizova,P.Cullen and S.Taherian,Mobile Terminal Location in. Indoor Cellular Multi-path Environment, Proceedings of the third IEEE Workshop on Wireless LANs,2001.
[11]P.Bahl and V.N.Padmanabhan,RADAR: An In-Building RF-Based User Location and
Tracking System, Proceedings of IEEE INFOCOM 2000,Vol. 2, pp.775-784, 2000.
[12]http:/www.gpsworld.com
[13]F.L. Lewis, Wireless Sensor Network, John Wiley, New York, 2004.
[14]J.Hill,R.Szewczyk,A.Woo,S.Hollar,D.Culler,K.Pister, System architecture directions for networked sensors, ASPLOS-IX, Cambridge, MA, November 2000.
[15]Freescale, MC13211/212/2132/214 Zigbee - Compliant Platform 2.4GHz Low Power Transceiver for the IEEE 802.15.4 Standard plus Microcontroller Reference Manual Document Number: MC1321xRM Rev. 1.1, Freescale Technology Forum-Paris, October 2006.
[16]S.Tilak,B.Abu-Ghazaleh, and W.Heinzelman, A Taxonomy of wireless micro-sensor network models, Mobile Computing and Communications Review, 2002.
[17]R.Christ and R.Laving, Radio frequency-based personel location systems, Proceedings of IEEE Security Technology Conference, October. 2000.
[18]T.Y. Chen, and D.H. Huang, Adaptive Random Testing by Localization, 11th Asia- Pacific Software Engineering Conference, 2004.
[19]Li. Xiaoli, Shi. Hongchi, and Yi Shang, A sorted RSSI Quantization Based Algorithm for Sensor Network Localization, 11th international Conference on Paralell and Distributed Systems, 2005.
[20]K.Lrincz and M. Welsh , Motetrack: A Robust, Decentralized Approach to RF Based Location Tracking, Personal and Ubiquitous Computing, Special Issue on Location and Context-Awareness , 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔