跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/03 23:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊宜松
研究生(外文):Yi-Sung Yang
論文名稱:混沌系統之電路實現與滑動模式控制
論文名稱(外文):Implementation of chaotic systems and chaos suppressing via sliding mode control
指導教授:顏錦柱
指導教授(外文):Jun-Juh Yan
學位類別:碩士
校院名稱:樹德科技大學
系所名稱:電腦與通訊研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:56
中文關鍵詞:混沌滑動模式控制
外文關鍵詞:chaossliding mode control
相關次數:
  • 被引用被引用:0
  • 點閱點閱:225
  • 評分評分:
  • 下載下載:54
  • 收藏至我的研究室書目清單書目收藏:1
本論文探討利用滑動模式控制來控制Lorenz混沌系統,並且針對聯合混沌系統來做廣義之投影同步,而且考慮其非線性輸入;再者,我們運用等效控制的觀念提出一個保密通訊系統。本論文可以分成以下四大部分:
一、我們建立一強健控制法則來控制穩定Lorenz混沌系統,並且提出一新的適應性轉換面來確保系統在轉換面上之穩定性。
二、基於滑動模式控制法則下,我們運用其法則來保證聯合混沌系統可以達到廣義投影同步,並且考慮不確定之參數擾動與非線性輸入。
三、我們利用僕混沌系統並結合滑動模式控制器之設計來同步主混沌系統,假如主-僕混沌系統達到同步,將可運用等效控制之觀念來將藏於混沌系統上之訊息解調回復。
四、成功利用轉移函數之概念來實現混沌系統,而混沌系統是利用OP放大器來完成,我們將可以更容易地獲得系統狀態,並且將其應用於混沌保密通訊系統上。
This dissertation investigates the chaos control of Lorenz system using the sliding mode control strategy and the problem of generalized projective synchronization for unified chaotic systems subject to sector nonlinear input. We also use the concept of equivalent control to present a new secure communication system.
Firstly, a robust control law is established which stabilizes the Lorenz chaotic system. An adaptive switching surface is introduced to simplify the task of assigning the stability of the closed-loop system in the sliding mode motion.
Secondly, based on the sliding mode control, a control scheme is developed to guarantee generalized projective synchronization even when the uncertainties and sector nonlinearity are present.
Thirdly, for a given chaotic master system, a slave system can be constructed to synchronize the master system via a sliding mode control. If they satisfy certain conditions, the hidden message can be recovered directly by the concept of equivalent control.
Lastly, we use the concept of transform function to implement chaotic system by OP amplifier that is original RLC circuit. In the circuit of implementation of chaotic systems by OPA, we can more easily get the states of system and apply it to chaos secure communication.
中文摘要 ------------------------------------------------------- i
Abstract ----------------------------------------------- ii
誌謝 ------------------------------------------------------- iii
Contents ----------------------------------------------- iv
List of Figures ----------------------------------------------- vi
Chapter 1 Introduction----------------------------------- 1
1.1 The sliding mode control of chaotic systems------------ 1
1.2 Generalized projective synchronization ---------------- 3
1.3 Secure communication with chaotic systems ------------- 4
Chapter 2 Sliding mode control in Lorenz system --------- 6
2.1 Introduction ------------------------------------------ 6
2.2 System formulation ------------------------------------ 7
2.3 Switching surface and sliding mode controller design -- 8
2.4 An illustrative example ------------------------------- 10
2.5 Summary ----------------------------------------------- 11
Chapter 3 Sliding mode control on the GPS of
unified chaotic systems with input nonlinearity --------------- 14
3.1 Introduction ------------------------------------------ 14
3.2 System formulation ------------------------------------ 15
3.3 Switching surface and controller design --------------- 17
3.4 Numerical examples ------------------------------------ 21
3.5 Summary ----------------------------------------------- 21
Chapter 4 Chaos synchronization in SMIB power system and its application in secure communication --------------------------- 28
4.1 Introduction ------------------------------------------ 28
4.2 System formulation ------------------------------------ 28
4.3 Switching surface and controller design --------------- 31
4.4 A numerical example ----------------------------------- 34
4.5 Summary------------------------------------------------ 34
Chapter 5 Implementation of chaotic systems-------------- 39
5.1 Implementation method (I) ----------------------------- 39
5.2 Implementation method (II) ---------------------------- 42
5.3 Summary------------------------------------------------ 43
Chapter 6 Conclusions------------------------------------ 52
References ----------------------------------------------- 54
Agrawal AK, Yang JN, Wu JC. Nonlinear control strategy for Duffing system. Int J Nonlinear Mech, 1998, 33, 829–41.
Bai EW, Lonngren KE. Synchronization and control of chaotic systems. Chaos, Solitons & Fractals, 1999, 10, 1571–1575.
Chee CY, Xu D. Control of the formation of projective synchronisation in lower-dimensional discrete-time systems. Phys Lett A, 2003, 318, 112-118.
Chen G, Ueta T. Yet another chaotic attractor. Int J Bifurcat Chaos, 1999, 9, 1465–6.
Chen G, Yu X. On time-delayed feedback control of chaotic systems. IEEE Trans Circuits Syst, 1999, 6, 1252–4.
Chen CC. Direct chaotic dynamics to any desired orbits via a closed-loop control. Phys Lett A, 1996, 213, 148–54.
Chen G, Dong X. On feedback control of chaotic continuous-time systems. IEEE Trans Circuits Syst, 1993, 40, 591–600.
Chen G, Raton B. Controlling chaos and bifurcations in engineering systems. Int J Robust and Nonlinear Control, 2001, 11, 393-397.
Chen GR, Ueta T. Yet another chaotic attractor. Int J Bifurcat Chaos, 1999, 9, 1465-1466.
Chen M., Zhou D., Shang Y.. A sliding mode observer based secure communication scheme. Chaos, Solitons &Fractals, 2005, 25, 573–578.
Cuomo KM, Oppenheim AV, Strogatz SH. Synchronization of Lorenz-based chaotic circuits with applications to communications. IEEE Trans Circ Syst II, 1993, 40(10), 626–33.
Feki M. An adaptive chaos synchronization scheme applied to secure communication. Chaos, Solitons & Fractals, 2003, 18(1), 141–8.
Halle KS, Wu CW, Itoh M, Chua LO. Spread spectrum communication through modulation of chaos. Int J Bifurc Chaos, 1993, 3(2), 469–77.
Hunt ER. Stabilizing high-period orbits in a chaotic system – the diode resonator. Phys Rev Lett, 1992, 67, 1953–5.
Itkis U. Control system of variable structure. Wiley, New York, 1976.
Konishi K, Hirai M, Kokame H. Sliding mode control for a class of chaotic motion. Phys Lett A, 1998, 245, 511–7.
Lian K-Y, Chiu C-S, Chiang T-S, Liu P. Secure communications of chaotic systems with robust performance via fuzzy observer based design. IEEE Trans Fuzzy Syst, 2001, 9(l), 212–20.
Lian K-Y, Liu P, Chiang T-S, Chiu C-S. Adaptive synchronization design for chaotic systems via a scalar driving signal. IEEE Trans Circ Syst, 2002, 49(l), 17–27.
Liao TL, Tsai SH. Adaptive synchronization of chaotic systems and its application to secure communications. Chaos, Solitons &Fractals, 2000, 11, 1387-1396.
Li CP, Chen G. Estimating the Lyapunov exponents of discrete systems. Chaos, 2004, 14,343-346.
Li CP, Xia X. On the bound of the Lyapunov exponents for continuous systems. Chaos, 2004, 14, 557-561.
Li CP, Peng GJ. Chaos in Chen's system with a fractional order. Chaos, Solitons &Fractals, 2004, 22, 443-450.
Lorenz EN. Deterministic non-periodic flows. J Atmos Sci, 1963, 20,130–41.
Lu J, Tao C, Lü JH. Parameter Identification and Tracking of a Unified System. Chin Phys Lett, 2002, 19, 632-635.
Lü J, Chen G, Cheng DZ, Celikovsky S. Bridge the gap between the Lorenz system and the Chen system. Int J Bifurcat Chaos, 2002, 12,2917-2926.
Nakajima H. On analytical properties of delayed feedback control of chaos. Phys Lett A, 1997, 232, 207–10.
Nijmeijer N, Berghuis H. On Lyapounov control of the Duffing equation. IEEE Trans Circuits Syst, 1995, 42, 473–7.
Ott E, Grebogi C, Yorke JA. Controlling chaos. Phys Rev Lett, 1990, 64, 1196–9.
Parmananda P, Sherard P, Rollins RW. Control of chaos in an electrochemical cell. Phys Rev E, 1993, 47, 3003–6.
Pecora LM, Carroll TL. Synchronization in chaotic systems. Phys Rev Lett, 1990, 64, 821-824.
Pyragas K. Continuous control of chaos by self-controlling feedback. Phys Lett A, 1992, 170, 421–8.
Shahverdiev E.M., Hashimova L.H., Hashimova N.T.. Chaos synchronization in some power systems. Chaos, Solitons &Fractals, 2006, 10, 1016.
Singer J, Wang Y, Bau H. Controlling a chaotic system. Phys Rev Lett, 1991, 66, 1123–5.
Tao CH, Lu JA. Control of a unified chaotic system. Acta Phys Sin, 2003, 52, 281-284.
Tsai H-H, Fuh C-C, Chang C-N. A robust controller for chaotic systems under external excitation. Chaos, Solitons &Fractals, 2002, 14, 627–632.
Utkin VI. Survey paper – variable structure systems with sliding modes. IEEE Trans Autom Contr, 1977, 22, 212–22.
Utkin V I. Sliding mode and their application in variable structure systems. Mir Editors, Moscow, 1978.
Wang J, Duan Z, Huang L. Dichotomy of nonlinear systems: Application to chaos control of nonlinear electronic circuit. Physics Letters A, 2006, 351, 143–152.
Wu CW, Chua LO. A simple way to synchronize chaotic systems with applications to secure communication systems. Int J Bifurc Chaos, 1993, 3(6), 1619–27.
Xinghuo Y. Controlling Lorenz chaos. Int J Syst Sci, 1996, 27, 355–9.
Xu D, Chee CY. Controlling the ultimate state of projective synchronization in chaotic systems of arbitrary dimension. Phys Rev E, 2002, 66.
Xu D, Chee CY, Li CP. A necessary condition of projective synchronization in discrete-time systems of arbitrary dimensions. Chaos, Solitons &Fractals, 2004, 22, 175-180.
Xu D, Li Z. Manipulating the scaling factor of projective synchronization in three-dimensional chaotic systems. Chaos, 2001, 11, 439-442.
Xu D, Ong WL, Li Z. Criteria for the occurrence of projective synchronization in chaotic systems of arbitrary dimension. Phys Lett A, 2002, 305, 167-172.
Yan J ,Li C. Generalized projective synchronization of a unified chaotic system. Chaos, Solitons &Fractals, 2005, 26, 1119-1124.
Yan JJ. Sliding mode control design for uncertain time-delay systems subjected to a class of nonlinear inputs. Int J Robust and Nonlinear Control, 2003, 13, 519-532.
Yan JP, Li CP. On synchronization of three chaotic systems. Chaos, Solitons &Fractals, 2005, 23, 1683-1688.
Yau HT, Chen CK, Chen CL. Sliding mode control of chaotic systems with uncertainties. Int J Bifurc Chaos, 2000, 10, 1139–47.
Yu X. Variable structure control approach for controlling chaos. Chaos, Solitons &Fractals, 1997, 8, 1577–86.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top