跳到主要內容

臺灣博碩士論文加值系統

(3.237.6.124) 您好!臺灣時間:2021/07/24 04:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蕭佳政
研究生(外文):Chia-Cheng Hsiao
論文名稱:以因子實驗設計分析以含銅赤血鹽修飾碳糊電極之反應參數對偵測過氧化氫的應答電流之影響及其應用於葡萄糖生醫感測器之研究
論文名稱(外文):A Factorial Design for Analysis of the Effect of Reaction Parameters on the Responding Current of Detection of Hydrogen Peroxide for the Carbon Paste Electrode Modified with the Copper Hexacyanoferrate and Its Application to the Glucose Biosensor
指導教授:林浩林浩引用關係
指導教授(外文):Hau Lin
學位類別:碩士
校院名稱:南台科技大學
系所名稱:化學工程與材枓工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:135
中文關鍵詞:含銅赤血鹽碳糊電極反應參數電流式生醫感測器
相關次數:
  • 被引用被引用:0
  • 點閱點閱:158
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於現今之食品工業,偶爾會添加過氧化氫作為防腐劑,所以能快速且方便使用的過氧化氫感測器為重要的研究主題。近年來,糖尿病已成為國人十大死亡原因之一,所以簡便快速之葡萄糖生醫感測器也成為重要之研究主題。葡萄糖藉由葡萄糖氧化酵素的催化,將葡萄糖氧化成葡萄糖酸並將氧還原成過氧化氫。本研究運用共沉法製備含銅赤血鹽粉體,[含銅赤血鹽:碳粉=3:7(重量比)],並運用含銅赤血鹽來修飾碳糊電極,由於含銅赤血鹽本身具有強催化性能與具有導電性能的碳粉及碳漿製作成碳糊電極(Carbon Paste Electrode),藉以提升催化還原過氧化氫之應答電流。
本研究實施三個因子[(A)操作電位 (B)攪拌速率 (C)磷酸鹽緩衝溶液(PBS)之pH值]及兩個水準之因子實驗設計來分析以含銅赤血鹽修飾碳糊電極之反應參數對偵測過氧化氫的靈敏度與平均應答電流之影響,並藉由SPSS統計分析軟體實施變異數分析。由因子實驗設計分析的效果值顯示操作電位在-200mV之靈敏度及平均應答電流高於操作電位在-50mV之靈敏度及平均應答電流,攪拌速率在500rpm之靈敏度及平均應答電流高於攪拌速率在300rpm之靈敏度及平均應答電流,而pH值之靈敏度及平均應答電流之效果值為負值,顯示pH=7.4之靈敏度及平均應答電流低於pH=4.0之靈敏度及平均應答電流。對靈敏度之變異數分析的結果顯示操作電位的主效果檢定(F =27.691,顯著性<0.05)與pH值之主效果檢定(F =23.857,顯著性<0.05)達顯著水準,而對平均應答電流之變異數分析的結果顯示操作電位的主效果檢定(F =23.053,顯著性<0.05)與pH值之主效果檢定(F =19.312,顯著性<0.05)也皆達顯著水準。當操作電位為-200mV,攪拌速率為500rpm,以0.05mM磷酸鹽緩衝溶液(pH=4.0)偵測過氧化氫之應答電流,可得偵測極限0.02mM H2O2,線性範圍為0.02 ~2.8 mM H2O2,靈敏度為141.04 μA/cm2ּmM H2O2,R2=0.9982。當操作電位為-200mV,攪拌速率為500rpm,以0.05mM磷酸鹽緩衝溶液(pH=7.4)偵測過氧化氫之應答電流,可得偵測極限為0.02 mM H2O2,線性範圍為 0.02~2.6 mM H2O2,靈敏度為121.606 μA/cm2ּmM H2O2,R2=0.9945。本研究之葡萄糖感測器的最適操作條件為操作電位-200mV,攪拌速率500rpm,磷酸鹽緩衝溶液pH=7.4。
Due to an occasional use of hydrogen peroxide in the food industry for the purpose of preservation nowadays, a rapid and convenient sensor for detecting the hydrogen peroxide is an important research subject. In recent years, diabetes has become one of the top ten causes of death for the people in our country and therefore, a convenient and rapid glucose biosensor also has become an important research subject. The glucose and oxygen can be catalyzed by the glucose oxidase and the glucose is oxidized to gluconic acid and the oxygen is reduced to hydrogen peroxide. A study was conducted to use the Coprecipitation method to prepare the Copper(Ⅱ) Hexacyanoferrate(Cu(Ⅱ)HCF) [Cu(Ⅱ)HCF : graphate carbon powders = 3 : 7(weight ratio)]. The Cu(Ⅱ)HCF was used to modify the carbon paste electrode because the Cu(Ⅱ)HCF possessed the excellent catalytic characteristic and it could be used with the graphite carbon powders and carbon paste to make the carbon paste electrode to elevate the responding current of the hydrogen peroxide.
A study of factorial design involving three factors[(A)operating potential, (B)stirring rate, (C)pH value of phosphate buffer solution(PBS)] and two levels was performed to analyze the effect of reaction parameters on the sensitivity and average responding current of detection of the hydrogen peroxide for the carbon paste electrode modified with the Cu(Ⅱ)HCF. The analysis of variance was performed by the SPSS (Statistical Package for the Social Science). The results of the calculating the effects showed that the sensitivity and average responding current at -200 mV operating potential were higher than those at -50 mV operating potential and the sensitivity and average responding current at 500 rpm stirring rate were higher than those at 300 rpm stirring rate. The value of the effect of pH value was negative which showed that the sensitivity and average responding current at pH=7.4 were lower than those at pH=4.0. The results of analysis of variance showed that the main effect of operating potential(F =27.691, p value < 0.05)and the main effect of pH value(F =23.857, p value < 0.05)were significant on the sensitivity and the main effect of operating potential(F =23.053, p value < 0.05)and the main effect of pH value (F =19.312, p value < 0.05) were also significant on the average responding current. At -200 mV operating potential, 500 rpm stirring rate and in 0.05M PBS buffer solution(pH=4.0), the detection limit was 0.02 mM, the linear range was 0.02~2.8 mM H2O2, R2=0.9982 and the sensitivity was 141.04 μA/cm2ּmM H2O2. At -200 mV operating potential, 500rpm tirring rate and in 0.05M PBS buffer solution(pH=7.4), the detection limit was 0.02 mM, the linear range was 0.02~2.6 mM H2O2, R2=0.9945 and the sensitivity was 121.606 μA/cm2ּmM H2O2. The results showed that the optimum operating condition for this research is operating potential= -200mV , stirring rate = 500rpm, and pH = 7.4 .
摘要…………………………………………………………………………………...iv
英文摘要………………………………………………………………………………v
誌謝…………………………………………………………………………………...vi
目次…………………………………………………………………………………..vii
表目錄………………………………………………………………………………...ix
圖目錄………………………………………………………………………………...xi
第一章 緒論…………………………………………………………………………..1
1.1 研究動機與目的……………………………………………………………1
1.2 糖尿病概述……………………………………...………………………….3
1.2.1糖尿病的症狀……………………………………………….…………4
1.2.2血糖機…………………………………...……………………………..4
1.3生醫感測器概述…………….…………………………….………………...5
1.3.1 辨識元件……………………………...………………………………7
1.3.2傳感元件………………………………………………………….….12
1.4 電化學法原理……………………………………………………………..12
1.5 電化學分析方法…………………………………………………………..13
1.5.1 循環伏安法…………....……………………………………………..13
1.5.2 定電位法……………………………………………………………..17
1.6 感測器的種類..…………………………………………………………....17
1.6.1熱感型感測器.......................................................................................18
1.6.2光學型感測器.......................................................................................18
1.6.3質量型感測器.......................................................................................19
1.6.4電化學型感測器………………………………….…………………...20
1.7 電流式生醫感測器偵測生理物質之原理………………...……………..22
1.8 電子傳媒………………………………………………………………….23
1.8.1 普魯士藍與類普魯士藍……………….…………………………….24
1.9 粉體製作技術…..………………………………………………………...27
1.9.1固相法……………………..…………………………………….…….27
1.9.2氣相法………………………………………………………….……...28
1.9.3液相法…………………………………………………………...……28
1.9.4其他………………………………………………………………...…29
第二章 實驗部份…………………………………………………………………..32
2.1 藥品與儀器………………………………………………………………..32
2.1.1 實驗藥品…………………………………………………………….32
2.1.2 實驗儀器…………………………………………………………….33
2.2藥品配製……………………….…………………………………………..35
2.3含銅赤血鹽的製備……………………..………………………………….37
2.4電極之製作...................................................................................................37
2.5碳糊電極之製備...........................................................................................38
2.6酵素電極之製備…………………………………………………………...39
第三章 因子實驗設計之因子高低水準之決定……………………………….…40
3.1實驗內容概述…………………………………………………..….……….40
3.2含銅赤血鹽混合之攪拌方式之探討…….……………….…………….….40
3.3偵測過氧化氫之操作電位的高低水準之決定…………...……….………48
3.4偵測過氧化氫之攪拌速率的高低水準之決定……...…………….………53
3.5偵測過氧化氫之緩衝溶液之pH 值的高低水準之決定…………….…...57
第四章 因子實驗設計之解釋名詞與實驗之決定………………………………62
4.1解釋名詞…………...……………………………………………….………62
4.2因子實驗設計之符號表…………………………………………….……...64
4.3決定因子實驗設計之實驗…………........………………………….……...67
第五章 結果與討論………………………………………………………………70
5.1因子實驗設計之結果……...……………………………………….………70
5.2最適條件下碳糊電極偵測過氧化氫之偵測極限及線性範圍…………..110
5.3酵素碳糊電極對葡萄糖之感測結果……………………………………..118
第六章 總結與結論……………………………………………………………..121
參考文獻………………………………………………..………………123
附錄A 運用SPSS統計軟體對以含銅赤血鹽修飾碳糊電極偵測過氧化氫
之靈敏度作變異數分析的結果………………………………………..132
附錄B 運用SPSS統計軟體對以含銅赤血鹽修飾碳糊電極偵測過氧化氫
之平均應答電流作變異數分析的結果………………………………..133
附錄C Nafion之介紹………………………………………………………….134
1. 胡明一、陳懿慧、謝慧玫及孫穆乾等編譯,”人體解剖學”,藝軒圖書出版社,Ch. 12, pp.400-401,1999。
2. 蔡君賢 , “含鉻黃血鹽修飾碳糊電極之製備及其應用於電流式生醫感測器”, 南台科技大學化學工程研究所碩士論文, 2005。
3. Jozefowicz, M., and Jozefonvicz, J., “Randomness and biospecificity: random copolymers are capable of biospecific molecular recognition in living systems”, Biomaterials, Vol. 18, pp.1633-1644, 1997.
4. Sohn, B. K., Cho, B. W., Kim, C. S., and Kwon, D. H., “ISFET Glucose and Sucrose Sensors by Using Platinum Electrode and Photo-Cross-Linkable Polymers”, Sensors and Actuators, Vol. 41, pp.7-11, 1997.
5. Ivnitski, D., Ihab, A. H., Atanasov, P., and Wilkins, E., “Biosensors for detection of pathogenic bacteria”, Biosensors and Bioelectronics, Vol.14, pp.599-624, 1997.
6. Collings, A. F., and Caruso, F., “Biosensors: recent advances”, Report on Progress in Physics, Vol. 60, pp.1397-1445, 1997.
7. Katakis, I., and Domingues, E.,“Characterization and stabilization of enzyme biosensors”, Trends in Analytical Chemistry, Vol. 14, pp. 310-319, 1995.
8. Kulys, J., “The carbon paste electrode encrusted with a microreactor as glucose biosensor”, Biosensors and Bioelectronics, Vol. 14, pp. 473 – 479, 1999.
9. Albareda-Sirvent, Miquel., Merkoci, A., and Alegret, S., “Thick-film biosensors for pesticides produced by screen-printing of graphite–epoxy composite and biocomposite pastes”, Sensors and Actuators B: Chemical, Vol. 79, pp. 48-57, 2001.
10.Karube, I., and Nomura, Yoko, “Enzyme sensors for environmental analysis”, Journal of Molecular Catalysis B: Enzymatic, Vol. 10, pp. 177-181, 2000.
11.Neikov, A., and Sokolov, S., “Generalized model for enzyme amperometric biosensors”, Analytica Chimica Acta, Vol. 307, pp. 27-36, 1995.
12.Sezginturk, M. K., and Dinckaya, E., “A novel amperometric biosensor based on spinach (Spinacia oleracea) tissue homogenate for urinary oxalate determination”, Talanta, Vol. 59, pp. 545 – 551, 2003.
13.Akyilmaz, E., and Dinckaya, E., “A mushroom (Agaricus bisporus) tissue homogenate based alcohol oxidase electrode for alcohol determination in serum”, Talanta, Vol. 53, pp. 505 – 509, 2000.
14.Li, B., Zhang, Z., and Jin, Y., “Plant tissue-based chemiluminescence flow biosensor for determination of unbound dopamine in rabbit blood with on-line microdialysis sampling”, Biosensors and Bioelectronics, Vol. 17, pp. 585 – 589, 2002.
15.Qin, W., Zhang, Z., and Peng, Y., “Plant tissue-based chemiluminescence flow biosensor for urea”, Analytica Chimica Acta, Vol 407, pp. 81-86, 2000.
16. Prabhakar, Nanduri R., Overholt, Jeffrey, L., “Cellular mechanisms of oxygen sensing at the carotid body: heme proteins and ion channels”, Respiration Physiology, Vol. 122, pp. 209 – 221, 2000.
17. Victoria., et. al., “Induction of brain glucose uptake by a factor secreted into cerebrospinal fluid”, Brain Research, Vol. 994 , pp. 124-133, 2003.
18. Lahiri, S., Rozanov, C., Roy, A., Storey, B., and Buerk, D. G., “Regulation of oxygen sensing in peripheral arterial chemoreceptors”, The International Journal of Biochemistry and Cell Biology, Vol. 33, pp. 755 – 774, 2001.
19.Liu, X., Jingyan., Song, D., Zhang, Z., Zhang, H., and Luo, G., “Determination of affinities and antigenic epitopes of bovine cardiac troponin I (cTnI) with monoclonal antibodies by surface plasmon resonance biosensor”, Analytical Biochemistry, Vol. 314 , pp. 301-309, 2003.
20.Rossi, M.,Manfredi, V., Ruvo, M.,Fassina, G., and Verdoliva, A., “Sequence-simplification and chimeric assembly: new models of peptide antigen modification”, Molecular Immunology Vol. 39, pp. 443-451, 2002.
21. Ditcham, W.G. F., Al-Obaidi, A.H.R., McStay, D., Mottram, T.T., Brownlie, J.,and Thompson, I., “An immunosensor with potential for the detection of viral antigens in body fluids, based on surface second harmonic generation”, Biosensors and Bioelectronics Vol. 16, pp. 221 – 224, 2001.
22. Babacan, S., Pivarnik, P., Letcher, S., and Rand, A.G., “Evaluation of antibody immobilization methods for piezoelectric biosensor application”, Biosensors and Bioelectronics Vol. 15 , pp. 615 – 621, 2000.
23. Hock, B., Seifert, M., and Kramer, K., “Engineering receptors and antibodies for biosensors”, Biosensors and Bioelectronics Vol. 17, pp. 239 – 249, 2002.
24. Vidal, Juan C., Garcia, Esperanza., Castillo, and Juan, R., “In situ preparation of a cholesterol biosensor: entrapment of cholesterol oxidase in an overoxidized polypyrrole film electrodeposited in a flow system: Determination of total cholesterol in serum”, Anal. Chim. Acta, Vol. 385, pp. 213-222, 1999.
25.Varlan, A. R., Suls, J., Jacobe, P., and Sansen,W., “A new technique of enzyme entrapment for planar biosensors”, Biosensors and Bioelectronics, Volume: 10, pp. xv-xix, 1995.
26.Vedrine, C., Fabiano, S., and Tran-Minh, C., “Amperometric tyrosinase based biosensor using an electrogenerated polythiophene film as an entrapment support”, Talanta, Vol. 59, pp. 535 – 544, 2003.
27.Andreescu,S.,Barthelmeds, L.,Marty, J. L., “Immobilization of acetylcholinesterase on screen-printed electrodes: comparative study between three immobilization methods and applications to the detection of organophosphorus insecticides”, Anal. Chim. Acta, Vol. 464, pp. 171-180, 2002.
28.Schuhmann, W., Kranz, C.,Wohlschlager, H., and Strohmeier, J., “Pulse technique for the electrochemical deposition of polymer films on electrode surfaces”, Biosensors and Bioelectronics, Vol. 12, pp. 1157-1167, 1997.
29. Hart, J.P., Abass, A.K., and Cowell, D., “Development of disposable amperometric sulfur dioxide biosensors based on screen printed electrodes”, Biosensors and Bioelectronics, Vol. 17, pp. 389 – 394, 2002.
30.Situmorang, M., Gooding, J. J., and Hibbert, D. B., “Immobilisation of enzyme throughout a polytyramine matrix: a versatile procedure for fabricating biosensors”, Anal. Chim. Acta, Vol. 394, pp. 211-223, 1999.
31. Poyard, S., Jaffrezic-Renault, N., Martelet, C., Cosnier, S., and Labbe, P., “Optimization of an inorganic/bio-organic matrix for the development of new glucose biosensor membranes”, Analytica Chimica Acta, Vol. 364, pp. 165-172, 1998.
32. Spohn, U., Narasaiah, D., Gorton, L., and Pfeiffer, D., “A bienzyme modified carbon paste electrode for the amperometric detection of l-lactate at low potentials”, Analytica Chimica Acta, Vol. 319 , pp. 79-90, 1996.
33. Wang, J., Rivas, G., and Chicharro, M., “Glucose microsensor based on electrochemical deposition of iridium and glucose oxidase onto carbon fiber electrodes”, Journal of Electroanalytical Chemistry, Vol. 439, pp. 55-61, 1997.
34. Karyakin, Arkady A., Karyakina, Elena E., and Gorton, Lo., “Prussian-Blue-based amperometric biosensors in flow-injection analysis”, Talanta Vol. 43, pp. 1597-1606, 1996.
35. Wang, J., Rivas, G., and Chicharro, M., “Glucose microsensor based on electrochemical deposition of iridium and glucose oxidase onto carbon fiber electrodes”, Journal of Electroanalytical Chemistry, Vol. 439, pp. 55-61,1997.
36. Karyakin, Arkady A., Karyakina, Elena E., and Gorton, Lo., “Prussian-Blue-based amperometric biosensors in flow-injection analysis”, Talanta, Vol. 43, pp. 1597-1606, 1996.
37. Clark, L. C., and Lyons, C., “Electrode system for continous monitoring in cardiovascular surgery”, Ann. N. Y. Acad. Sci. 102, 29, 1962.
38. Updike, S. J., and Hicks, G. P., “The enzyme electrode ”, Nature 214, 986, 1967.
39. Zhang, Z., Liu, H., and Deng, J., “A glucose biosensor based on immobilization of glucose oxidase in electropolymerized o-aminophenol film on platinized glassy carbon electrode,” Anal. Chem., 68, 1632, 1996.
40. Jung, S. K., and Wilson, G. S., “Polymeric mercaptosilane-modified platinum electrodes for elimination of interferants in glucose biosensors,” Anal. Chem., 68, 591, 1996.
41. Kumar, S. D., Kulkarni, A. V., Kalyanraman, R., and Krish-namorthy, T. S., “Whole blood glucose determination using glucose oxidase immobilized on cotton cheese cloth,” Anal. Chim. Acta, 338, 135, 1997.
42. Liu, H., Ying, T., Sun, K., Li, H., and Qi, D., “Reagentless amperometric biosensors highly sensitive to hydrogen peroxide, glucose and lactose based on N-methyl phenazine methosulfate incorporated in a Nafion film as an electron transfer mediator between horseradish peroxidase and an electrode,” Anal. Chim. Acta, 344, 187, 1997.
43. Uang, Y.-M., and Chou, T.-C., “Fabrication of glucose oxidase/polypyrrole biosensor by galvanostatic method in various pH aqueous solutions,” Biosensors and Bioelectronics, 19, 141, 2003.
44. Uang, Y.-M., and Chou, T.-C., “Criteria for designing a polypyrrole glucose biosensor by galvanostatic electropolymerization,” Electroanalysis, 14 (22), 1564, 2002.
45 . De Benedetto, G. E., Palmisano, F., and Zambonin, P. G., “ One-step fabrication of a bienzyme glucose sensor based on glucose oxidase and peroxidase immobilized onto a poly(pyrrole) modified glassy carbon electrode,” Biosensors and Bioelectronics, 11(10), 1001, 1996.
46. Singh, S., Chaubey, A., and Malhotra, B. D., “Amperometric cholesterol biosensor based on immobilized cholesterol esterase and cholesterol oxidase on conducting polypyrrole films,” Anal. Chim. Acta, 502, 229, 2004.
47. 彭振育, “含鈷赤血鹽應用於電流式生醫感測器”, 南台科技大學化學工程研究所碩士論文, 2004。
48. Towe, B. C., and Guilbeau, E. J., “A vibrating probe thermal biochemical sensor”, Biosensors and Bioelectronics, Vol. 11, pp. 247-252, 1996.
49. Xie, B., Ramanathan, K., and Danielsson, B., “Mini/micro thermal biosensors and other related devices for biochemical/clinical analysis and monitoring”, Trends in Analytical Chemistry, Vol. 19, pp. 340-349, 2000.
50. Xie, B., Tang, XJ., Wollenberger, U., Johansson, G., Gorton, L., Scheller, F., and Danielsson, B., “Hybrid biosensor for simultaneous electrochemical and thermometric detection”, Biosensors and Bioelectronics, Vol. 13, pp. iii-iv,1998.
51.Bjarnason, B., Johansson, P., and Johansson, G., “A novel thermal biosensor: evaluation for determination of urea in serum”, Analytica Chimica Acta, Vol. 372, pp. 341-348, 1998.
52.Ramanathan, K., Rank, M., and Svitel, J.,“Dzgoev, Anatoli; Danielsson, Bengt, The development and applications of thermal biosensors for bioprocess monitoring”, Trends in Biotechnology, Vol. 17, pp. 499-505, 1999.
53.Bertucci, C.,and Cimitan, S., “Rapid screening of small ligand affinity to human serum albumin by an optical biosensor”, Journal of Pharmaceutical and Biomedical Analysis, Vol. 32, pp. 707 – 714, 2003.
54.Wu, X. J., and Choi, M. F., “An optical glucose biosensor based on entrapped-glucose oxidase in silicate xerogel hybridised with hydroxyethyl carboxymethyl cellulose”, Analytica Chimica Acta, Vol. 514, pp. 219-226, 2004.
55. 田蔚城,“生物技術”, 九州圖書文物有限公司, pp.247-262.
56. 陳旭群,“尿素感測器之研製”, 國立陽明大學醫學工程研究所碩士論文, 1987。
57. 王盈錦, 吳至中, 張寅 , “光纖生物感測器之回顧與展望”, 生物產業,第2 期, pp.187-192, 1991.
58. Qijin Chi and Shaojun Dong, “Amperometric biosensors based on the immobilization of oxidases in Prussian blue film by electrochemical codeposition” Anal. Chim. Acta, Vol. 310, pp.429-436, 1995.
59. Arkady A. Karyakin , Elena E. Karyakina , Lo Gorton , “On the mechanism of H2O2 reduction at Prussian Blue modified electrodes”, Electrochemistry Comm, Vol. 1, pp.78-82, 1999.
60. Garjonyte, R., and Malinauskas, A., “Glucose biosensor based on glucose oxidase immobilized in electropolymerized polypyrrole and poly(o-phenylenediamine) films on a Prussian Blue-modified electrode”, Sensors and Actuaors B, Vol. 63, pp.122-128, 2000.
61. Miao, Y., and Tan, S. N., “Amperometric hydrogen peroxide biosensor with silica sol–gel/chitosan film as immobilization matrix”, Anal. Chim. Acta, Vol. 437, pp.87-93, 2001.
62.KatrliK, J., Pizzariello, A., Mastihuba, V., Svorc, J., Stredansky, M., and Miertus, S., “Biosensors for L-malate and L-lactate based on solid binding matrix”, Anal. Chim. Acta, Vol. 379, pp.193-200, 1999.
63. Dzyadevich, S.V., Arkhipova, V. N., Soldatkin, A. P., Elskaya, A. V., and Shulga, A.A., “Glucose condductometric biosensor with potassium hexacyanoferrate(Ⅲ) as an oxidizing agent”, Anal. Chim. Acta, Vol. 374, pp.11-18, 1998.
64. Milagres, B. G., Oliveira Neto, G., Kubota,L. T., and Yamanaka, H., “A new amperometric biosensor for salicylate base on salicylate hydroxylase immobilized on poliprrole film doped with hexacyanoferrate”, Anal. Chim. Acta, Vol. 347, pp.35-41, 1997.
65. Yiming Xu and Heinz-Bernhard Kraatz, “Efficient synthesis of unsymmetrically disubstituted ferrocenes:towards electrochemical dipeptide-Fc-biosensors”, Tetrahedron Letters, Vol. 42, pp.2601-2603, 2001.
66. Jan Tkac , Igor Vostiar, Ernest Sturdík, Peter Gemeiner, Vladimír Mastihuba, Julius Annus ,“Fructose biosensor based on d-fructose dehydrogenase immobilised on a ferrocene-embedded cellulose acetate membrane”. Anal. Chim. Acta, Vol. 439, pp.39-46, 2001.
67. Pandey, P. C., and Upadhyay, S., “Bioelectrochemistry of glucose oxidase immobilized on ferrocene encapsulated ormosil modified electrode”, Sensors and Actuators B, Vol. 76, pp.193-198, 2001.
68. Pandey, P. C., Upadhyay, S., Ida, T., Singh, G., and Tripathi V. S., “A novel ferrocene encapsulated palladium-linked ormosil-based electrocatalytic dopamine biosensor”. Sensors and Actuators B, Vol. 75, pp.48-55, 2001.
69. Liu, H., Li, H., Ying, T., Sun, K., Qin, Y., and Qi, D., “Amperometric biosensor snesitive to glucose and lactose based on co-immobilization of ferrocene, glucose oxidase, β-galactosidase and mutarotase in β-cyclodextrin polymer”, Anal. Chim. Acta, Vol. 358, pp.137-144, 1998.
70. Lupu, S., Mihailciuc, C., Pigani, L., Seeber, R., Totir, N., and Zanardi, C., “Electrochemical preparation and characterisation of bilayer films composed by Prussian Blue and conducting polymer”, Electrochemistry Comm, Vol. 4, pp.753-758, 2002.
71. Arkady A. Karyakin, Olga V. Gitelmacher, Elena E. Karyakina, “Prussian Blue-Based First-Generation Biosensor. A Sensitive Amperometric Electrode for Glucose”, Anal. Chem, Vol. 67, pp.2419-2423, 1995.
72. Chi, Q., and Dong, S., “Amperometric biosensors based on the immobilization of oxidases in Prussian blue film by electrochemical codeposition” Anal. Chim. Acta, Vol. 310, pp.429-436, 1995.
73. Karyakin, A. A., Karyakina, E. E., and Gorton, L., “On the mechanism of H2O2 reduction at Prussian Blue modified electrodes”, Electrochemistry Comm, Vol. 1, pp.78-82, 1999.
74. Garjonyte, R., and Malinauskas, A., “Glucose biosensor based on glucose oxidase immobilized in electropolymerized polypyrrole and poly(o-phenylenediamine) films on a Prussian Blue-modified electrode”, Sensors and Actuaors B, Vol. 63, pp.122-128, 2000.
75. Miao, Y., and Tan S. N., “Amperometric hydrogen peroxide biosensor with silica sol–gel/chitosan film as immobilization matrix”, Anal. Chim. Acta, Vol. 437, pp.87-93, 2001.
76. Jaroslav KatrliK, Andrea Pizzariello, Vladimír Mastihuba, Jozef Svorc, Miroslav Stredansky, Stanislav Miertus, “Biosensors for L-malate and L-lactate based on solid binding matrix”, Anal. Chim. Acta, Vol. 379, pp.193-200, 1999.
77. Sergei, V., Dzyadevich, Valentina N., Arkhipova, Alexei P., Soldatkin, Anna V., Elskaya, Alexandre A.Shulga., “Glucose condductometric biosensor with potassium hexacyanoferrate(Ⅲ) as an oxidizing agent”, Anal. Chim. Acta, Vol. 374, pp.11-18, 1998.
78. Benjamin G. Milagres, Graciliano de Oliveira Neto, Lauro T. Kubota, Hideko Yamanaka, “A new amperometric biosensor for salicylate base on salicylate hydroxylase immobilized on poliprrole film doped with hexacyanoferrate”, Anal. Chim. Acta, Vol. 347, pp.35-41, 1997.
79.Xu, Y., and Kraatz, H. B., “Efficient synthesis of unsymmetrically disubstituted ferrocenes:towards electrochemical dipeptide-Fc-biosensors”, Tetrahedron Letters, Vol. 42, pp.2601-2603, 2001.
80. Jan Tkac, Igor Vostiar , Ernest Sturdík , Peter Gemeiner , Vladimír Mastihuba , and Julius Annus,“Fructose biosensor based on d-fructose dehydrogenase immobilised on a ferrocene-embedded cellulose acetate membrane”. Anal. Chim. Acta, Vol. 439, pp.39-46, 2001.
81. Pandey, P. C., and Upadhyay, S., “Bioelectrochemistry of glucose oxidase immobilized on ferrocene encapsulated ormosil modified electrode”, Sensors and Actuators B, Vol. 76, pp.193-198, 2001.
82. Pandey, P. C., Upadhyay, S., Tiwari, I., Singh, G., and Tripathi, V. S., “A novel ferrocene encapsulated palladium-linked ormosil-based electrocatalytic dopamine biosensor”. Sensors and Actuators B, Vol. 75, pp.48-55, 2001.
83. Haiying, L., Haihong, L., Tailin Y., Kang, S., Yiqin, Q., and Deyao, Q., “Amperometric biosensor snesitive to glucose and lactose based on co-immobilization of ferrocene, glucose oxidase, β-galactosidase and mutarotase in β-cyclodextrin polymer”, Anal. Chim. Acta, Vol. 358, pp.137-144, 1998.
84.Brahim, S., Narinesingh, D., and Guiseppi-Elie, A., “Amperometric determination of cholesterol in serum using a biosensor of cholesterol oxidase contained within a polypyrrole–hydrogel membrane”, Anal. Chim. Acta, Vol. 448, pp.27-36. 2001.
85. Becerik, I., and Kadirgan, F., “Glucose sensitivity of platinum-based alloys incorporated in polypyrrole films at neutral media”, Synthrtic Metals, Vol. 124, pp.379-384, 2001.
86. Sun, S., Zhao, J., Xu, H., Sun, Y., Zhang, X., and Shen, J., “Fabrication of a multilayer film electrode containing porphyrin and its application as a potentiometric sensor of iodide ion”, Talanta, Vol. 46, pp.15-21, 1998.
87. Ikariyama, Y., Yamauchi, S., Yukiashi, T., and Ushiodo, H., “Electrochemical Fabrication of Amperometic Microenzyme sensor”, Journal of the electrochemistry Society, Vol. 136, pp. 702-706, 1989.
88. Wang J., Liu J., Chen L., and Lu F., “Highly Selective Membrance-Free, Mediator-Free Glucose Biosensor”, Analytical Chemistry, Vol. 66, pp. 3600-3603, 1994.
89. Abe, T., Lau, Y.Y.,and Ewing, A.G., “Characterization of Glucose Microsensors for Intracellular Measurements”, Analytical Chemistry, Vol. 64, pp. 2160-2163, 1992.
90. Napporn, W.T., Laborde, H., Leger, J.-M., and Lamy, C., “Electro-oxidation of Cl molecules at Pt-based catalysts highly dispersed into a polymer matrix: effect of the method of preparation”, Journal of Electroanalytical chemistry, Vol. 404, pp.153-159, 1996.
91. Becerik, I., and Kadirgan, F., “Glucose sensitivity of platinum-base alloys incorporated in polypyrrole films at neutral media”, Synthetic Metals, Vol. 124, pp.379-384, 2001.
92. Neuburger, G.G., and Johnson, D.C., “Pulse Amperometric Detection of Carbohydrates at Gold Electrodes with a Two-Step Potential Waveform”, Analytical Chemistry, Vol. 59, pp.150-154, 1987.
93. Keggin, J. F., and Miles, F. D., “Structures and formule of the Prussian blues and related compounds,” Nature, 137, 577, 1936.
94.Herren, P., Fischer, P., Ludi, A., and Halg, W., “Neutron Diffraction Study of Plussian Blue, Fe4[Fe(CN)6]3.xH2O. Location of Water Molecules and Long-Range Magnetic Order”, Inorg. Chem, Vol. 19, pp.956, 1980.
95. Bonnette, Jr. A. K., and Gandy, S. E., “Isotopic exchange in Prussian blue,” J. Chem. Educ. 58, 355, 1981.
96. Inoue, H. S., and Yangisawa, S., “Bonding nature and semiconductivity of Prussian blue and related compounds,” J. Inorg, Nucl. Chem. 36, 1409, 1974.
97. Buser, H. J., Ron, G., Ludi, A., and Engel, P., “Crystal structure of cadmium hexacyanopalladate(IV),” J. Chem. Soc. Dalton. Trans. 16, 2473, 1974.
98. Seifer, G.B., and Inorg Chem.,Vol.7,pp.621-623,1959.
99. Rigamonti, R., and Gass Chim.Ital.,Vol.67,pp.137,1937.
100.Karyakin, A. A., Gitelmacher, O. V., and Karyakina, E. E., “Prussian blue-based first-generation biosensor. A sensitive amperometric electrode for glucose,” Anal. Chem., 67, 2419, 1995.
101. Chen, S. M., “Characterization and electrocatalytic properties of cobalt hexacyanoferrate films,” Electrochim. Acta, 43(21-22), 3359-3369, 1998.
102.Hatton, T. A., in “Surfactant-Based Separation Process” (J. F. Scamehorn and J. H. Harwell ed.), ch.3., Marcell Dekker, New york, 1989.
103.賴龍標,”鉑奈米結構電極之製備”,國立成功大學化學工程學系博士班博士論文,2001。
104.Luisi, P. L., “Enzymes hosted in reverse micelles in hydrocarbon solution,” Angew. Chem. Int. Ed. Engl., 24, 439, 1985.
105.許文嘉, “含銅赤血鹽修飾平板式酵素電極應用於電流式生醫感測器”,南台科技大學化學工程研究所碩士論文,2005。
106.施偉仲,”還原型葡萄糖生化感測器之發展研究”,淡江大學化學學系碩士班碩士論文,1997。
107. Itaya, K., Shoji, N., and Uchida, I., “Catalysis of the Reduction of Molecular Oxygen to Water at Prussian Blue Modified Electrodes”, J. Am. Chem. Soc, Volume:106, 1984, pp.3423-3429.
108. Montgomery, D.C., “ Design and Analysis of Experiments(5th) ”,
pp.170–287, 2006.
109.張邵勳、張邵評、林秀娟編著,”SPSS for Windows 統計分析-初等統計與高等統計(下冊)”,文魁資訊股份有限公司出版,2004。
110.黃振宏,”Nafion溶液成膜的物理性質與形態學”,元智大學化工學系碩士班碩士論文,2003。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top