跳到主要內容

臺灣博碩士論文加值系統

(44.220.251.236) 您好!臺灣時間:2024/10/11 13:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳秦嘉
研究生(外文):Chin Chia-Chen
論文名稱:以Chitosan螯合製備中溫型SOFC用NiO-SDC陽極材料
論文名稱(外文):Fabrication of NiO-SDC anode for IT-SOFC with Chitosan chelation
指導教授:吳文昌吳文昌引用關係
學位類別:碩士
校院名稱:南台科技大學
系所名稱:化學工程與材枓工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:105
中文關鍵詞:NiO-SDC陽極支撐體固態氧化物燃料電池幾丁聚醣螯合
外文關鍵詞:NiO-SDCanode supportSOFCchitosanchelate
相關次數:
  • 被引用被引用:2
  • 點閱點閱:289
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究旨在製備具有高分散性、低陽極化過電位以及高三相界且可在中低溫操作下獲得高性能的NiO-SDC陽極材料。以硝酸鈰銨與氧化釤的起始原料溶解後作為超音波振盪造霧的起始溶液,在超音波振盪造霧反應10小時後煅燒600℃1h。獲得0.1~1μm大小的圓形SDC粉體,作為合成NiO-SDC陽極用的起始粉體。接著利用2M的硝酸溶解幾丁聚醣(Chitosan)時對SDC粉體的包覆以及Ni金屬離子的吸附螯合功能,接著以1M的NH4OH調整螯合溶液中pH值至6後,溶液中的Chitosan會由不定形轉變成定形後進而形成Ni/CS/SDC前驅粉體。Ni/CS/SDC前驅粉體以高溫熱處理方式完全去除Chitosan而獲得NiO-SDC粉體。經由TGA、FT-IR、SEM以及XRD的結果而知,Ni/CS/SDC前驅粉體至少必須經1000℃煅燒才能將Chitosan完全除去且得到最好的立方體NiO結晶相。藉由控制Ni與Chitosan重量比在Ni/CS/SDC比例為10:10:1時,可獲得較高Ni含量約為50wt%且組成分佈均勻。另外,Ni/CS/SDC前驅粉體經壓碇燒結後,會因前驅粉體中含有大量Chitosan,使得燒結體易於爆裂。針對這現象,在實驗中則先將Ni/CS/SDC前驅粉體煅燒500℃再以5000psi的壓力壓碇再行燒結,最後而獲得本研究最終的NiO-SDC陽極支撐體。另一方面,接著利用水熱法以及甘胺酸硝酸鹽燃燒法,合成SDC電解質與SSC、SDC陰極粉體。分別與乙基纖維素、香油腦以及PEG-300研磨混合形成電解質與陰極漿料,隨後塗佈於本研究的NiO-SDC陽極支撐體上,經共燒結後而完成單電池組。在結構上陽極與陰極為多孔性,電解質為較緻密結構。在電性方面,本研究所製備而成的Ni-SDC/SDC/SSC-SDC三層結構單電池,經開環電壓測試得知,開環電壓只有0.1~0.2V,其最主要極可能受限於電解層的不緻密與介面間接合不佳導致電性結果不佳。
In this study, the high dispersion, low anodic potential loss and high TPB. NiO-SDC anodic materials which could been used for low or middle temperature SOFC had been synthesized. The raw materials of ammonium cerium nitrate and samarium oxide were dissoluted with deionized water as synthesize solution, then poured into the ultrasonic disunite reactor. The SDC (Ce0.9Sm0.1O1.95) powders were obtained with ultrasonic reaction time for 10hr and calcined at 600℃ for 1h. The SDC powders formed have a particle size of 0.1~1μm, and were used to prepare the NiO-SDC anode.
The Chitosan was dissolution with HNO3 of 2M, it not only covered on the SDC surface but also chelated Ni ion. Then, the pH of solution charged from 3 to 6 with the NH4OH of 1M, and the Ni/CS/SDC precursor powders have been formed.
In order to obtain NiO-SDC powder from Ni/CS/SDC precursor powder in this study using high temperature calcined method. The Ni/CS/SDC precursor powders were thermal treatment at 1000℃ to remove the chitosan, and formed the NiO-SDC phase. Furthermore, we would control the weight ratio of Ni ion and Chitosan which could obtain most high Ni amount for 50wt% and composing distributed uniform over at the Ni/CS/SDC ratio for 10:10:1 .
Another, the pellet body would be cracked after sinter, because of it’s contain large amount the Chitosan in the Ni/CS/SDC precursor powder. So, first we calcined the Ni/CS/SDC precursor powders at 500℃ and were pressed uniaxially of 5000 psi. The, the NiO-SDC anode for anode support SOFC was obtain after sinter of sinter of 1000℃ for 1 hr.
On the other hand, this study have been used hydrothermal method and glyine-nitrate process method of synthesize SDC electrolyte powder and SSC-SDC cathode material powder, respectively. Then, SDC electrolyte powders have been milled mixed with ethyl cellulose and terpineol form electrolyte slurry. Then, SSC with SDC cathode powders have been milled mixed with polyethylene glycol 300 (PEG-300) form cathode slurry. Such as, electrolyte with cathode of slurry that had been casted on the anode support form single cell module by slurry casting mothed.
The single cell of three-layer was observed with SEM which two kinds of gas room cross-section were porous structure but electrolyte layer has much small pore and crack after co-sinter for 1400℃ for 4h. The cell produce OCV was 0.1~0.2V at the operating temperature 800℃, form the result indicated that the electrolyte film was non-dense and electrochemical test was not well.
目 錄
中文摘要-------------------------------------------------------------I
Abstract-----------------------------------------------------------II
致 謝------------------------------------------------------------IV
目 錄-------------------------------------------------------------V
表 目 錄-----------------------------------------------------------VII
圖 目 錄----------------------------------------------------------VIII
ㄧ、序論------------------------------------------------------------01
1.1簡介----------------------------------------------------------01
1.2文獻回顧------------------------------------------------------06
1.2-1 SOFC之工作原理-------------------------------------------06
1.2-2 SOFC之應用與優缺點-------------------------------------07
1.2-3 固態氧化物電解質-----------------------------------------08
1.2-4 固態氧化物陰極-------------------------------------------10
1.2-5 固態氧化物陽極-------------------------------------------12
1.2-6 金屬陶瓷陽極---------------------------------------------13
1.2-7 陽極混合導體---------------------------------------------16
1.3研究動機------------------------------------------------------21
二、原理------------------------------------------------------------24
2.1幾丁聚醣------------------------------------------------------24
2.1-1幾丁質與幾丁聚醣介紹---------------------------------------24
2.1-2幾丁聚醣之特性--------------------------------------------25
2.1-2-1生物活性------------------------------------------25
2.1-2-2螯合吸附性-----------------------------------------25
2.1-2-3抗菌性--------------------------------------------27
2.1-3幾丁聚醣之應用--------------------------------------------27
2.2陽極電化學反應-------------------------------------------------26
2.3超音波合成原理-------------------------------------------------29
2.4水熱法反應系統-------------------------------------------------31
2.5溶解-析出(Dissolution-precipitation )機構----------------------32
2.6甘胺酸燃燒法應用原理--------------------------------------------36
2.7電性----------------------------------------------------------37
2.7-1開路電位(OCV)--------------------------------------------37
2.7-2電流電位圖------------------------------------------------37
三、實驗裝置與步驟----------------------------------------------------38
3.1實驗藥品與儀器-------------------------------------------------38
3.1-1實驗藥品-------------------------------------------------38
3.1-2實驗儀器-------------------------------------------------39
3.2實驗方法------------------------------------------------------40
3.2-1陽極材料製備----------------------------------------------40
3.2-2電解質製備------------------------------------------------42
3.2-3陰極製備-------------------------------------------------44
3.2-4單電池組裝------------------------------------------------45
3.3分析方法------------------------------------------------------46
3.3-1粉體分析--------------------------------------------46
3.3-2燒結體剖面與表面形態分析------------------------------46
3.3-3陽極視密度的量測-------------------------------------46
3.3-4傅立葉紅外線光譜儀(FTIR)分析--------------------------47
3.3-5熱重/熱差分析(TG/DTA)--------------------------------47
3.3-6X-ray繞射分析---------------------------------------47
3.3-7Ni-SDC陽極之孔隙度測定分析----------------------------48
3.3-8電性測試--------------------------------------------50
3.3-8-1阻抗測試分析----------------------------------50
四、結果與討論-------------------------------------------------------52
4.1陽極材料製備與分析----------------------------------------------52
4.1-1 SDC粉體合成---------------------------------------------52
4.1-2 Ni/CS/SDC前驅粉體---------------------------------------57
4.1-2-1 Ni/CS/SDC前驅粉體製備----------------------------59
4.1-2-2 Ni/CS/SDC前驅粉體分析----------------------------63
4.1-3 Ni/CS/SDC前驅粉體中Ni含量探討-----------------------------71
4.1-4 Ni-SDC陽極燒結體-----------------------------------------75
4.1-4-1陽極視比重與收縮率分析-----------------------------75
4.1-4-2陽極燒結體橫斷面與俯視面分析------------------------77
4.2單電池組製備與分析----------------------------------------------80
4.2-1電解質製備分析--------------------------------------------80
4.2-2陰極材料分析----------------------------------------------81
4.2-2-1 SSC粉體形態分析-----------------------------------81
4.2-2-2 SDC粉體形態分析------------------------------------81
4.3單電池之特性分析-----------------------------------------------84
4.3-1單電池結構分析--------------------------------------------84
4.3-2Ni-SDC陽極吸附脫附之特性分析-------------------------------86
4.3-3單電池電性測試分析-----------------------------------------87
五、結論------------------------------------------------------------90
六、檢討與建議-------------------------------------------------------92
七、參考文獻---------------------------------------------------------96
1. 詹清棋,水熱共沉法製備奈米級GDC-SOFCs電解質,南台科技大學化工所碩士論文,民95。
2. Proceeding of fuel cell, COE/TPC/ITRI, 1(1999).
3. S. S. Pener, A. J. Apple, etc, Commercialization of Fuel Cell , Progress in Energy and Combustion science, 21, pp.145-151(1995).
4. R. J. Kee, H. Zhu, D. G. Goodwin, Solid-oxide fuel cells with hydrocarbon fuels, Proceedings of the Combustion Institute, 30, pp.2379–2404 (2005)
5.黃炳照,鄭銘堯,固態氧化物燃料電池之進展,化工技術,第111期,民國91年6月pp.135。
6.陳冠蓉,以Ni-SDC作為固態燃料電池之陽極,國立清華大學化工所碩士論文,民94。
7. K. Huang and J. B. Goodenough, Wet chemical synthesis of Sr- and Mg- doped LaGaO3 a perovskite-type oxide-ion conductor, J. Solid State Chemistry, 136, pp.274-283 (1998)
8. B. C. H. Steele, in High Conductivity Solid Ionic Conductor, ed. T. Takahashi (World scientific, Singapore, 1989).
9. k. kinoshta, Electrochemical Oxygen Technology, John Wiley & Son. New York, Chap. 2& Chap.4 (1992).
10. J. B. Goodenough, J.-S. Zhou, Localized to Itinerant Electronic Transitions in Transition-
Metal Oxides with the Perovskite Structure, Chem. Mater., 10, pp.2980-2993(1998)..
11. N. Q. Minh, T. Takahashi, Science and technology of ceramic fuel. Elsevier, (1995).
12. S. J. Skinner, Recent advances in Perovskite-type materials for solid oxide fuel cell cathodes, International J. of Inorg Mat., 3, pp.113-121(2001).
13. 衣寶廉,燃料電池-原理與應用,五南出版
14. S. Ohara, R. Maric, X. Zhang, et al, High performance electrodes for reduced temperature solid oxide fuel cells with doped lanthanum gallate electrode, I. Ni-SDC cermet anode, J. Power Sources, 86, pp.455-458(2000).
15. G. X. Zhang, S. Ohara, R. Maric, et al, Ni-SDC cermet anode for medium-temperature solid oxide fuel cells with lanthanum gallate electrolyte, J. Power Sources, 83, pp.170-177(1999)
16.T. Misono, K. Murata, T. Fukui, J. Chaichanwong, k. sato, H. Abe, Makio Naito, Ni-SDC cermet anode fabricated from NiO-SDC composite powder for intermediate temperature SOFC, J. Power Source, 157, pp. 754-757(2006).
17.M. Kawano, K. Hashino, H. Yoshida, H. Ijichi, S. Takahashi, S. Suda and T. Inagaki, Synthesis and characterizations of composite particles for solid oxide fuel cell anodes by spray pyrolysis and intermediate temperature cell performance, Journal of Power Sources, 152, pp. 196-199(2005)
18. S.G. Kim, S.P. Yooh, S.W. Nam, S.H. Hyun, S. A. Hong, Fabrication an characterization of a YSZ/YDC composite electrolyte by a sol-gel coating method, J. Power Sources, 110, pp.222-228(2002)
19.陳建忠,以Ni-SDC 作為固態氧化物燃料電池陽極材料行直接內部甲烷蒸氣重組反應之研究, 國立清華大學化工系碩士論文,民93。
20.H. Uchida, N. Mochizuki and M. watanabe, High performance Electrode for Medium Temperature operating Solid Oxide Fuel Cells, J. Electrochem. Soc., 143, pp.1700-1704 (1996)
21.K. Kendall, C. M. Finnerty, G. A. Tompsett, P. Windbank, N. Coe, Rapid heating SOFC system for hybrid applications. Electrochemistry, 68, pp. 403-406(2000).
22. M. Mogensen, N. M Sammes, G. A Tompsett, Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ionics, 129(1-4), pp.69-94(2000).
23. 李鎮江,微乳化法製備幾丁聚醣微球及其對鉛吸附機制之探討,靜宜大學應用化學研究所碩士論文,民94。
24. J. Wang, Z. Lü, X. Huang, K. Chen, N. Ai, J. Hu and W. Su, YSZ films fabricated by a spin smoothing technique and its application in solid oxide fuel cell, Journal of Power Sources, 163, pp. 957-959 (2007).
25. C. Sun, Z. Xie, C. Xia, H. Li, L. Chen, Investigations of mesoporous CeO2–Ru as a reforming catalyst layer for solid oxide fuel cells, Electrochemistry Communications, 8, pp.833–838(2006)
26. Z. Xie, W. Zhu, B. Zhu, C. Xia, FexCo0.5−xNi0.5–SDC anodes for low-temperature solid oxide fuel cells, Electrochimica Act., 51, pp.3052–3057(2006).
27. Zhen Xie, Changrong Xia, Mengying Zhang, Wei Zhu and Huanting Wang, Ni1−xCux alloy-based anodes for low-temperature solid oxide fuel cells with biomass-produced gas as fuel , Journal of Power Sources, 161(2), pp. 1056-1061(2006).
28. N. Ai, Z. Lü, K. Chen, X. Huang, B. Wei, Y. Zhang, S. Li, X. Xin, X. Sha, W. Su, Low temperature solid oxide fuel cells based on Sm0.2Ce0.8O1.9films fabricated by slurry spin coating, Journal of Power Sources, 159, pp.37–640(2006).
29. W. Zhu, C. Xia, J. Fan, R. Peng and G. Meng, Ceria coated Ni as anodes for direct utilization of methane in low-temperature solid oxide fuel cells ,Journal of Power Sources, 160, pp.897-902(2006)
30. Y. Yin, W. Zhu, C. Xia, G. Meng, Gel-cast NiO–SDC composites as anodes for solid oxide fuel cells , Journal of Power Sources ,132, pp.36–41 (2004).
31. Yanhong Yin, Shaoyu Li, Changrong Xia and Guangyao Meng ,Electrochemical performance of gel-cast NiO–SDC composite anodes in low-temperature SOFCs ,Electrochimica Acta, 51, pp. 2594-2598( 2006).
32. S. P. Yoon, J. Han, S. W. Nam, T. H. Lim, S. A. Hong, Improvement of anode performance by surface modification for solid oxide fuel cell running on hydrocarbon fuel, Journal of Power Sources, 136 , pp. 30–36 (2004).
33. X. Fang, G. Zhu, C. Xia, X. Liu, G. Meng, Synthesis and properties of Ni–SDC cermets for IT–SOFC anode by co-precipitation, Solid State Ionics, 168 , pp.31–36(2004).
34. K. Chen, Z. Lü, N. Ai, X. Huang, Y. Zhang, X. Ge, X. Xin, X. Chen and W. Su, Fabrication and performance of anode-supported YSZ films by slurry spin coating , Solid State Ionics, 177
(39-40) , pp. 3455-3460 ( 2007).
35. Zhongliang Zhan, Scott A. Barnett, Solid oxide fuel cells operated by internal partial oxidation reforming of iso-octane ,Journal of Power Sources, 155,pp. 353–357 (2006).
36. Zhongliang Zhan, Scott A. Barnett, Solid oxide fuel cells operated by internal partial oxidation reforming of iso-octane ,Journal of Power Sources, 155,pp. 353–357 (2006).
37. Q. Ma, R.R. Peng, L. Tian, G. Meng, Direct utilization of ammonia in intermediate-
temperature solid oxide fuel cells, Electrochemistry Communications, 8 ,pp.1791–1795(2006).
38. M. Kawano, K. Hashino, H. Yoshida, H. Ijichi, S. Takahashi, S. Suda and T. Inagaki, Synthesis and characterizations of composite particles for solid oxide fuel cell anodes by spray pyrolysis and intermediate temperature cell performance , Journal of Power Sources, 152, pp. 196-199(2005).
39. S. Wang, M. Ando, T. Ishihara., Y. Takita, High performance Ni–Sm0.15Ce0.85O1.9 cermet anodes for intermediate temperature solid oxide fuel cells using LaGaO3 based oxide electrolytes, Solid State Ionics ,174 ,pp.49–55 (2004).
40. S. Suda, M. Itagaki, E. Node, S. Takahashi, M. Kawano, H. Yoshida and T. Inagaki, Preparation of SOFC anode composites by spray pyrolysis , J. of the European Ceramic Soc., 26,pp. 593-597(2006)
41.黃國豪,幾丁聚醣薄膜的製備及其性質之研究,國立雲林科技大學化學工程系碩士論文,民93。
42.李妙如,中空二氧化矽之製備,南台科技大學化工所碩士論文,民95。
43.C. Claire, D. Odile, D. Alain, Influence of the degree of acetylation on some biological properties of chitosan films, Biomaterials, 22, pp.261-268(2001).
44.H. Zhu , X. Ji , D. Yang , Y. Ji , H. Zhang, Novel CuS hollow spheres fabricated by a novel hydrothermal method, Microporous and Mesoporous Materials, 80, pp.153–156 (2005).
45. T. Tianwei, H. Xiaojing and D. Weixia, Adsorption behaviour of metal ions on imprinted chitosan resin, Journal of Chemical Technology and Biotechnology, 76, pp.191-195(2001).
46.J. Li and B. Renbi, Mechanisms of Lead Adsorption on Chitosan/PVA Hydrogel Beads, Langmuir, 18, pp.9765-9770(2002).
47.莊仲揚,幾丁聚醣/丙烯酸共聚體合成與性質研究,國立台灣大學化學工程學研究所碩士論文,民89。
48.湯政明,添加幾丁聚醣對於受重金屬污染土壤植物復育影響之個案研究,朝陽科技大學環境工程與管理系碩士論文,民96。
49.W. Z. Zhu and S. C. Deevi, A review on the status of anode materials for solid oxide fuel cells, Materials Science and Engineering, 362, pp.228-239(2003).
50. J. Mizusaki, H. Tagawa and T. Saito, Preparation of Nickel Pattern Electrodes on YSZ and Their Electrochemical Properties in H2-H2O Atmospheres, J. Electrochem. Soc., 141, pp. 2129-2135 (1994).
51.賴耿陽,超音波工學理論實務,復漢出版社公司,民81 年。
52.吳文昌,日本横濱國立大學博士論文,民82 年。
53. M. Guidi, L. Marini, G. Scandiffio and R. Cioni, Chemical geoghermometry in hydrothermal aqueous solutions, Geothermics, 19(5), pp.415-421 (1990)
54.G. A. Rossetti, D. J. Watson, R. E. Newnham and J. H. Adair, Kinetics of the hydrothermal crystallization of the perovskite lead titanate, J. Crystal Growth, 116(3-4), pp.251-260 (1992).
55.S. E. Wei, C. Tai, W. B. Guo and Z. W. Zhou, Crystallographic properties of hydrothermal barium titanate crystallites, J. Am. Ceram. Soc., 80, No. 6, pp.1567-1572 (1997).
56. M. Hirano and E. Kato, Hydrothermal Synthesis of Cerium (IV) Oxide, J. Am. Ceram. Soc., 79(3), pp.777-780(1996).
57. P. L.Chen and I. W. Chen, Reactive Cerium(IV) Oxide Powder by the Homogeneous Precipitation Method, J. Am. Ceram. Soc., 80(12), pp3221-3224(1997).
58.黃琬婷,二氧化鈰超微粉之製備及其特性之研究,國立成功大學化工所碩士論文,民89。
59. M. S. Tsai, Formation of nanocrystalline cerium oxide and crystal growth, Journal of Crystal Growth, 274, pp.632–637(2005).
60. L. M. Demetsyanets and A. N. Lopachev, Some problems of hydrothermal crystallization process under hydrothermal condition, Consaltants Bureau, london Press, pp.1 (1973).
61. 林生嶺、嚴豸明,甘氨酸燃燒法合成複合氧化物及電化學研究,電源與技術,pp.283-287,2000年10月。
62. G. C. Kennedy, Some properties of Strontium-doped lanthanum chromite, Amer. J. Sci., 248, pp.254 (1950).
63. K. Kajiyoshi, N. Ishizawa and M. Yoshimura, Heteroepitaxial growth of BaTiO3 thin films on SrTiO3 substrates under hydrothermal conditions, Jpn. J. Appl. Phys., 30, No. 1B, pp.120-127 (1990).
64. S. Yang, T. He and Qi. He , Sm0.5Sr0.5CoO3 cathode material from glycine-nitrate process: Formation, characterization, and application in LaGaO3-based solid oxide fuel cells , Journal of Alloys and Compounds, In Press, Corrected Proof ( 2006).
65. Wei Zhou, Zongping Shao and Wanqin Jin, Synthesis of nanocrystalline conducting composite oxides based on a non-ion selective combined complexing process for functional applications , Journal of Alloys and Compounds, 426(1-2), pp. 368-374(2006)
66.吳泰伯和許樹恩,X光繞射原理與材料結構分析,國科會機密儀器中心,pp.103-374,民82。
67. 廖聖茹,材料奈米技術專題, 190,民國91年10月。
68. N. Ai, Z. Lü, K. Chen, X. Huang, Y. Liu, R. Wang, W. Su, Preparation of Sm0.2Ce0.8O1.9 membranes on porous substrates by a slurry spin coating method and its application in IT-SOFC, Journal of membrane Science, 286, pp.255-259(2006).
69. IUPAC, Pure & Appl.Chem., 57 , pp.603(1985).
70. Y. Matsuzaki, I. Yasuda, Electrochemical properties of reduced-temperature SOFCs with mixed ionic-electronic conductor in electrode and/or interlayers, Solid State Ionics, 152-153, pp.463-468(2002).
71. T. Misono, K. Murata, T. Fukui, J. Chaichanawong, K. Sato, H. Abe, M. Naito, Ni-SDC cermet anode fabricated from NiO-SDC composite powder for intermediate temperature SOFC, Journal of Power Sources, 157, Issue 2-3, pp. 754-757 (2006).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 白博仁(1999)。國小學生的性別角色及其與自我概念的關係之研究。國立屏東師範學院國民教育研究所碩士論文,未出版。
2. 范信賢(2005)。敘說課程實踐的故事:一種敘事性觀看教師經驗的方式。教育研究月刊,130,45-55。
3. 夏林清(2002)。尋找一個對話的位置:基進教育與社會學習歷程。應用心理研究,16,119-156。
4. 莊明貞(1997a)。兩性教育:兩性平等教育如何落實──多元文化教育觀。教師天地,90,13-21。
5. 莊明貞(2000)。九年一貫課程性別議題之知識與權力分析,教育研究資訊,10(6),1-18。
6. 莊明貞(2002)。九年一貫課程的社會新興議題:政策到實施的反省。國民教育,43(1),7-13。
7. 莊明貞(2005a)。敘事探究及其在課程研究領域之發展。教育研究月刊,130,14-29。
8. 莊明貞 ( 2005b) 。性別與課程的建構—以九年一貫課程「性別平等教育議題」 為例。 教育研究月刊,139,16-31 。
9. 莊明貞、潘志煌(2004)。批判理論及其在課程研究應用之評析。教育研究月刊,121,36-57。
10. 許育光(2000)。敘說研究的初步探討-從故事性思考和互為主體的觀點出發 。輔導季刊,36(4),17-26。
11. 陳源湖(2003)。從多元文化教育觀點論述外籍配偶教育之實踐。成人教育,75,20-30。
12. 謝臥龍(1998)。從兩性平權教育的觀點探討教學互動中的性別偏見。教育研究,54,37-43。
13. 張玨、王舒芸(1997)。情慾自主與兩性平等的性教育。學生輔導,48,38-49。
14. 5.黃炳照,鄭銘堯,固態氧化物燃料電池之進展,化工技術,第111期,民國91年6月pp.135。