(3.234.221.162) 您好!臺灣時間:2021/04/14 16:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許佳蓉
研究生(外文):Chia Jung Hsu
論文名稱:超音波照射應用於陽極氧化鋁模版製備磁性Ni、Ni-Co、Ni奈米線之研究
論文名稱(外文):Influence of ultrasonic irradiation on fabrication of magnetic Ni、Ni-Co、Co nanowire arrays by using aluminum oxide as templates
指導教授:吳文昌
學位類別:碩士
校院名稱:南台科技大學
系所名稱:化學工程與材枓工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:103
中文關鍵詞:超音波照射陽極氧化鋁膜電解沉積法Ni奈米線陣列Ni-Co奈米線陣列
外文關鍵詞:Ultrasonic irradiationAnodic aluminum oxide membraneElectrodepositionNi nanowire arraysNi-Co alloy nanowire arrays
相關次數:
  • 被引用被引用:0
  • 點閱點閱:109
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用陽極氧化處理後形成陣列式奈米孔洞之氧化鋁膜做為模板(AAO template),在不同電解條件下利用電解沉積法(electrodeposition)將鎳金屬和鈷金屬原子填入奈米孔洞內,沉積直徑約為250 nm之Ni及Ni-Co奈米線陣列,並找出適當之沉積電位,進一步配合超音波照射(ultrasonic irradiation)檢討不同照射強度對Ni及Ni-Co奈米線成長以及其微結晶結構、磁性之影響。
Ni奈米線在無超音波照射時,隨著沉積電位之增加,其沉積速率也隨之增加。但沉積電位-0.8V以下時, Ni奈米線幾乎沒有明顯的成長,而在電位大於-1.1V時,則因孔洞之電流分布不均而導致不均勻的成長。在-0.8V~-1.0V之電位範圍內皆可沉積結晶性較佳之奈米線,並以-1.0V附近的沉積電位為最佳。
在超音波照射時,沉積速率會隨著照射強度增加而增加,當超音波照射強度在12W以下,其結晶結構和無超音波照射相比並無太大的變化,而當照射強度為15W以上時 ,其主要成長面仍為(111),並且在18W時其(111)相對強度達最高值。由VSM可測得其Ni奈米線之飽合磁化量可高達11000Oe左右,且不論有無超音波照射容易磁化軸皆為垂直奈米線方向。且其矯頑力的值皆在軟磁範圍內。
在合金部份的Ni-Co磁性奈米線則以沉積電位-1.0V可生成沉積Ni-Co奈米線,再來製備不同組成比對有無超音波的比較中除了皆可沉積出合金態的奈米線之外隨電解液中Ni離子濃度含量的上升沉積速率也有增加的趨勢。
使用超音波照射強度18W配合不同組成Ni-Co奈米線之沉積速率、結晶結構和磁性的分析,從中明顯的發現沉積速率隨超音波強力攪拌的效應使得合金相的Ni-Co沉積速率比未加超音波沉積合金奈米線更快約一倍左右。 XRD分析Co-Ni合金奈米線中發現,其晶體結構在無超音波照射下為fcc混合hcp的結構,在此優選成長為(111)並跟隨Ni含量的上升使其結晶性上升,而在超音波的照射下,由於衝擊效應使抑制優選成長(111)並使其hcp(100)的結晶性更好。
由VSM分析出磁易軸在有無超音波的影響下皆是磁場垂直奈米線的方向,此外在加入超音波照射下使結晶性比原先無超音波的還要好,由於衝擊效應使得優選成長面(111)有被促進的一個現象,使得磁性越好。在矯頑力方面來看,由於磁晶異向能使得Ni-Co合金奈米線偏向硬磁的材料,於此我們可以得知在純相的Ni、Co奈米金屬線可做為軟磁材料的良好應用外,在硬磁方面則可依需求藉由不同原子比的合金奈米線,合成出所須的材料,對於未來在磁記錄媒體上具有其應用的價值。
In this study, the Ni nanowire arrays is prepared by using the arrays nanoporous of anodic aluminum oxide membrane as a template (AAO template) with electrodeposition method. The Ni and Ni-Co nanowire arrays were deposited with various electrolytic condition. The optimum electrolytic conditions had been investigated. The diameter of AAO pores is about 250nm. Furthermore, the growing phenomenon, microcrystalline structure and magnetic properties were investigated in the presence of ultrasonic irradiation with a various irradiation power density.
The deposition rates was increased with the increasing of the electrolytic potential without ultrasonic irradiation. Ni nanowires almost not be obtained as the electrolytic potential less then -0.8V. The Ni nanowires were deposited successfully in the electrolytic potential range of -0.8V to -1.0V. On the other hand, the Ni nanowires were not grown uniformly as the electrolytic potential above -1.1V. Therefore, the optimum electrolytic potential was determined of -1.0V. On the other hand, the rates of Ni nanowires deposition increased with increasing of the ultrasonic irradiation power density in the presence of ultrasonic irradiation.
When the microstructure had not change significantly under 12W of ultrasonic irradiation power density compared with the absence of ultrasonic irradiation. When ultrasonic irradiation power densities were above 15W, the preferred growth orientations of Ni nanowires was (111) plane, and the (111) plane was the maximum when power density of ultrasonic irradiation was 18W.
The analysis of growth rate, crystallinity and magnetic properties of Ni-Co nanowires increased with ultrasonic irradiation compared with without ultrasonic irradiation, because of the strong agitation effect was generated during ultrasonic irradiation.

XRD pattern shown the Co-Ni alloy nanowire deposited that the crystal structure was fcc mixes hcp structure in the absence of ultrasonic. The (111) plane was improved with the ultrasonic irradiation and the Ni content of Ni-Co nanowires deposited. Furthermore, the crystallinity of the Ni-Co nanowires deposited increased with two effects. On the other hand, in the presence of ultrasonic irradiation the referred growth orientations of fcc (111) plane was inhibited and improved the hcp (100) growth, because the shock wave effects generated during ultrasonic irradiation.

The magnetic properties of Ni-Co alloy nanowire arrays were determined by VSM with a function of Ni-Co composition, even use ultrasonic or not. The magnetic easy axis of the Ni-Co alloy nanowire was perpendicular the nanowire, and with ultrasonic irradiation(18W) that the crystallinity was better then without ultrasonic irradiation. Because the shock wave effect of ultrasonic irradiation improved the (111) perfect orientation plane, and make magnetic properties became more better. The magneticcrystalline aniosotrppy affected on the alloy Ni-Co nanowire deposited become hard magnetic, and in the same time we can find the pure Ni and pure Co are all soft magnetic, It was indicated that you can discretionarily fabricated different content magnetic nanowire all you need .
摘要.................................................................................................................................i
英文摘要........................................................................................................................ii
目錄 iv
表目錄..........................................................................................................................xii
圖目錄…………………………………………………………………………..…..xiii
第一章 緒論 1
1.1 前言………………………………………………………………………….1
1.2 文獻回顧 6
1.2.1 奈米線之製備.......................................................................................9
1.2.2 超音波之應用.......................................................................................6
1.3 研究動機 10
第二章 理論簡介 9
2.1 多孔性陽極氧化鋁膜...................................................................................12
2.2 電沉積原理……………………………………………………………...…20
2.3 磁性物質之特性…………………………………………….......................23
2.3.1 磁性材料之分類……………………………………………………23
2.3.2 鐵磁性材料之磁滯現象與自發磁化………………………………28
2.4 超音波原理………………………………………………………………...29
第三章 實驗方法........................................................................................................36
3.1實驗藥品與鍍液組成....................................................................................37
3.1.1 實驗藥品……………………………………………………………37
3.1.2 鍍液組成……………………………………………………………38
3.2 電鍍鈷沈積裝置…………………………………………….......................39
3.3 實驗步驟…………………………………………………….......................40
3.3.1 電流-電位掃描量測………………………………………………...40
3.3.2電沉積鎳…………………………………………………………….40
3.3.3電沉積鎳-鈷………………………………………………………...41
3.4奈米線陣列的表面狀態結晶微結構及磁性分析…………........................43
3.4.1場放射型掃描式電子顯微鏡(FESEM)……………………………..43
3.4.2高解析穿透式電子顯微鏡(HRAEM)………………………………43
3.4.3 X光繞射(XRD)……………………………………………………..44
3.4.4振動樣品磁化儀(VSM)……………………………………………..44
第四章 結果與討論 46
4.1鎳奈米線電解條件之探討 46
4.2 無超音波照射對鎳奈米線沉積行為之影響 49
4.3 超音波照射對鎳奈米線沉積行為之影響 54
4.3.1 定電位(-1.0V)下,不同超音波強度對鎳奈米線沉積行為之影
響 ………………………………………………………………60

4.4 有無超音波照射對鎳奈米線結晶結構及磁性性質之影響 68
4.5鎳-鈷奈米線電解條件之探討……………………………………………...77

第五章 結論 91
第六章參考文獻..........................................................................................................93
1. 張煦,李學養,磁性物理學,聯經出版事業公司,民71年。
2. Y. Guo, D. H. Qin, J. Bo Ding, and H. L. Li, Annealing and morphology effects on the Fe 0.39Co 0.61 nanowire arrays, Applied Surface Science, 218, 106–112 (2003).
3. Q. F. Liu, C. X. Gao, J. J. Xiao, and D. S. Xue, Size effects on magnetic properties in Fe0.68Ni 0.32 alloy nanowire arrays, Journal of Magnetism and Magnetic Materials, 260, 151–155 (2003).
4. J. M. Garcia, A. Asenjo, J. Velazquez, D. Garcia, M. Vazquez, P. Aranda, and E. Ruiz-Hitzky, Magnetic behavior of an array of cobalt nanowires, Journal of Applied Physics, 85(8),5480-5482 (1999).
5. M. Vazquez, Soft magnetic wires, Physica B, 299, 302–313 (2001).
6. 金重勳,磁性技術手冊,磁性技術協會,民91年。
7. D. H. Qin, M. Lu, H. L. Li, Magnetic force microscopy of magnetic domain structure in highly ordered Co nanowire arrays, Chemical Physics Letters, 350, 51–56 (2001).
8. G. J. Strijkers, J. H. J. Dalderop, M. A. A. Broeksteeg, H. J. M. Swagten, and W. J. M. de Jonge, Structure and magnetization of arrays of electrodeposited Co wires in anodic alumina, Journal of Applied Physics, 86(9),5141-5145 (1999).
9. H. Chiriac, A. E. Moga, M. Urse, T. -A. Óvári, Preparation and magnetic properties of electrodeposited magnetic nanowires, Sensors and Actuators, 106(A), 348–351 (2003).
10. M. Kroll, W. J. Blau, D. Grandjean, R. E. Benfield, F. Luis, P. M. Paulus, L. J. de Jongh, Magnetic properties of ferromagnetic nanowires embedded in nanoporous alumina membranes, Journal of Magnetism and Magnetic Materials, 249, 241–245 (2002).
11. S. Ge, X. Ma, C. Li, Fabrication of electrodeposited Co nanowire arrays with perpendicular anisotropy, Journal of Magnetism and Magnetic Materials, 226-230, 1867-1869 (2001).
12. Y. C. Kong, and D. P. Yu, Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach, Applied Physics Letters, 78(4), 407-409 (2001).
13. Yingjiu Zhang, Qi Zhang, Yubao Li, Nanglin Wang, and Jing Zhu, Coating of carbon nanotubes with tungsten by physical vapor deposition, Solid State Communications, 115, 51–55 (2000).
14. A. A. Setlur, J. M. Lauerhaas, A method for synthesizing large quantities of carbon nanotubesand encapsulated copper nanowires, Applied Physics Letters, 345-347 (1996).
15. A. Z. Jin, Y. G. Wang, Z. Zhang, Synthesis and characterization of Cu/SiO2-x composite nanowires, Journal of Crystal Growth, 252, 167–173 (2003).
16. P. Aranda, J. M. Garcıa, Porous membranes for the preparation of magnetic nanostructures, Journal of Magnetism and Magnetic Materials, 249, 214–219 (2002).
17. A. Fert, L. Piraux, Magnetic nanowires, Journal of Magnetism and Magnetic Materials, 200, 338-358 (1999).
18. S. Shingubara, O. Okino, Y. Sayama, H. Sakaue, T. Takahagi, Two-dimensional nanowire array formation on Si substrate using self-organized nanoholes of anodically oxidized aluminum, Solid-State Electronics, 43, 1143-1146 (1999).
19. Y. Zhou, J. Huang, C. Shen, H. Li, Synthesis of highly ordered LiNiO2 nanowire arrays in AAO templates and their structural properties, Materials Science and Engineering, 335(A), 260–267 (2002).
20. M. S. Gudiksen, J. Lincoln, Growth of nanowire superlattice structures for nanoscale photonics and electronics, Nature, 617-620 (2002).
21. X. Y. Yuan, T. Xie, G. S. Wu, Y. Lin, G. W. Meng, L. D. Zhang, Fabrication of Ni–W–P nanowire arrays by electroless deposition and magnetic studies, Physica, 23(E), 75-80 (2004).
22. X. Y. Yuan, G. S. Wu, T. Xie, Y. Lin, G. W. Meng, L. D. Zhang, Autocatalytic redox fabrication and magnetic studies of Co–Ni–P alloy nanowire arrays, Solid State Communications, 130, 429–432 (2004).
23. L. Li, Y. Zhang, G. Li, L. Zhang, A route to fabricate single crystalline bismuth nanowire arrays with different diameters, Chemical Physics Letters, 378, 244–249 (2003).
24. Y. Zhou, C. Shen, H. Li, Synthesis of high-ordered LiCoO2 nanowire arrays by AAO template, Solid State Ionics, 146, 81–86 (2002).
25. Y. G. Guo, L. J. Wan, C. F. Zhu, D. L. Yang, D. M. Chen, and C. L. Bai, Ordered Ni-Cu nanowire array with enhanced coercivity, Chem. Mater., 15, 664-667 (2003).
26. C. G. Jin, W. F. Liu, C. Jia, X. Q. Xiang, W. L. Cai, L. Z. Yao, X. G. Li, High-filling,large-area Ni nanowire arrays and the magnetic Properties, Journal of Crystal Growth, 258, 337–341 (2003).
27. A. K. M. Bantu, J. Rivas, G. Zaragoza, M. A. Lopez-Quintela, and M. C. Blanco, Influence of the synthesis parameters on the crystallization and magnetic properties of cobalt nanowires, Journal of Non-Crystalline Solids, 287, 5–9 (2001).
28. D. H. Qin, L. Cao, Q. Y. Sun, Y. Huang, H. L. Li, Fine magnetic properties obtained in FeCo alloy nanowire arrays, Chemical Physics Letters, 358, 484–488 (2002).
29. G. B. Ji, W. Chen, S. L. Tang, B. X. Gu, Z. Li, Y. W. Du, Fabrication and magnetic properties of ordered 20 nm Co–Pb nanowire arrays, Solid State Communications, 130, 541–545 (2004).
30. K. Miyazaki, S. Kainuma, K. Hisatake, T. Watanabe, N. Fukumuro, Giant magnetoresistance in Co-Cu granular alloy films and nanowires prepared by pulsed-electrodeposition, Electrochimica Acta, 44, 3713-3719 (1999).
31. Y. K. Su, D. H. Qin, H. L. Zhang, H. Li, H. L. Li, Microstructure and magnetic properties of bamboo-like CoPt/Pt multilayered nanowire arrays, Chemical Physics Letters, 388, 406–410 (2004).
32. 賴耿陽,實用電鍍技術全集,復漢出版社,民87年。
33. Y. Zhao, C. Bao, R. Feng, and R. Li, A new method of etching ABS plastic for plating by ultrasound, Plating & Surface Finishing, 85(9), 98-100 (1998).
34. J. Reisse, H. Francois, J. Vandercammen, O. Fabre, A. Kirsch-de Mesmaeker, C. Maerschalk, and J. L. Delplancke, Sonoelectrochemistry in aqueous electrolyte: a new type of sonoelectroreactor, Electrochimica Acta, 39(1), 37-39 (1994).
35. R. Aoyagi, R. Fujiwara, and T. Niita, Possibility of metal processing using ultrasonic cavitation jet, The Japan Society of Applied Physics, 40, 3784-3786 (2001).
36. W. Lauterborn, and C. D. Ohl, Cavitation bubble dynamic, Ultrasonic Sonochemistry, 4, 65-75 (1997).
37. W. R. Wolfe, H. Chessin, E. Yeager, and F. Hovorka, The effect of ultrasonic waves on the electrodeposition of copper, Journal of The Electrochemical Society, 101(12), 590-596 (1954).
38. A. L. Rotinyan, V. S. Parfenova, R. A. Puchkova, and G. S. Semikozov, Electrochemical method of electrolyte purification under the influence of ultrasonic vibrations, Journal of Applied Chemistry of the U.S.S.R, 34, 327-331 (1961).
39. K. Kobayashi, A. Chiba, and N. Minami, Effects of ultrasound on both electrolytic and electroless nickel depositions, Ultrasonic, 38, 676-681 (2000).
40. 吳玉萍,李惠琪,超聲波化學鍍研究,電鍍與環保,18(2),16-18,民87年。
41. M. C. Hsiao, and C. C. Wan, The effect of ultrasonic agitation on copper plating in an acid bath, Plating and Surface Finishing, 76(3), 46-50 (1989).
42. C. T. Walker, and R. Walker, Hardening effect of ultrasonic agitation on copper electrodeposits, Journal of The Electrochemical Society, 124(5), 661-669 (1977).
43. P. Kristof, and M. Pritzker, Improved copper plating though the use of current pulsing &ultrasonic agitation, Plating and Surface Finishing, 85(11), 237-252 (1998).
44. R. G. Hickmam, The influence of ultrasonic agitation on porosity in nickel electroplates, Plating, 52(6), 540-542 (1965).
45. 江昇,超音波應用於積體電路銅製程之作用機制探討,南台科技大學化工所碩士論文,民93年。
46. G. E. Thompson, G. C. Wood, Porous anodic films formation on aluminum, Nature, 290, 230-232 (1981).
47. H. Chen, R. G. Downing, Guiding and focusing neutron beams using capillary optics, Nature, 357, 391-393 (1992).
48. R. J. Tonucci, B. L. Justus, Nanochannel array glass, Science, 258(30), 783-785 (1992).
49. H. Masuda, K. Fukuda, Ordered metal nanohole array made by a two-step replication of honeycomb structures of anodic alumina, Science, 268, 1466-1471 (1995).
50. G. E. Thompson, Porous anodic alumina:fabrication, characterization and applications, Thin Solid Films, 297, 192-201 (1997).
51. L. Young, Anodic oxide films, Academic Press:New York, (1971).
52. G. Sauer, G. Brehm, S. Schneider, K. Nielsch, R. B. Wehrspohn, J. Choi, H. Hofmeister, and U. Gosele, Highly ordered monocrystalline silver nanowire arrays, Journal of Applied Physics, 91, 3243-3247 (2002).
53. Y. T. Pang, G. W. Menga, L. D. Zhang, W. J. Shana, C. Zhang, X. Y. Gao, A. W. Zhao, Synthesis of ordered Al nanowire arrays, Solid State Sciences, 5, 1063–1067 (2003).
54. W. B. Zhao, J. J. Zhu, H. Y. Chen, Photochemical synthesis of CdSe and PbSe nanowire arrays on a porous aluminum oxide template, Scripta Materialia, 50, 1169–1173 (2004).
55. 熊楚強,王月,電化學,大洋出版社,民85年。
56. 張世杰,次0.15微米溝渠與引洞上電鍍銅技術,交通大學材料所碩士論文,民89年。
57. 賴耿陽,超音波工學理論實務,復漢出版社公司,民81年。
58. 吳文昌,日本横浜国立大学博士論文,民82年。
59. 吉田幸一,平山良夫,山本武正,岡安夫,岩佐博文,日本應用磁氣學會講演,13aA,12(1984)。
60. 林欣瑋,奈米金屬線之製程研發及特性研究,國立台灣大學化學所碩士論文,民92年。
61. 陳秋傑,氧化鋁模版應用於鎳及氧化鎳奈米線製備與特性之研究,國立中興大學材料所碩士論文,民92年。
62. 郭天傑,超音波照射應用於陽極氧化鋁模板製備磁性Co奈米線之研究,民94。
63. I.Z. Rahmana,b,*, K.M. Razeeb a,b, Md. Kamruzzamana,b, Marina Serantoni b,Characterisation of electrodeposited nickel nanowires using NCA template, Journal of Materials Processing Technology 153–154 (2004) 811–815.
64. 白育綸,電沉積鐵族合金之組成控制、表面奈米化應用,民92。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔