(3.215.183.251) 您好!臺灣時間:2021/04/22 23:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳世偉
研究生(外文):amadues
論文名稱:磁性奈米顆粒在腫瘤溫熱法應用上之研究
論文名稱(外文):The study of hyperthermia for tumor therapy using magnetic
指導教授:江禎立
指導教授(外文):CHEN-LI CHIANG
學位類別:碩士
校院名稱:南台科技大學
系所名稱:生物科技系
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:97
中文關鍵詞:磁性奈米顆粒溫熱法四氧化三鐵幾丁聚醣比吸收率月桂酸聚乙烯亞胺
外文關鍵詞:magnetic nanoparticleslauric acidpolyethylenimine(PEI)Fe3O4specific absorption rate(SAR)chitosan
相關次數:
  • 被引用被引用:0
  • 點閱點閱:232
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
超順磁性(superparamagnetic)奈米顆粒,具有高發熱能力及低毒性之優點,近年來在治療腫瘤上成為深具潛力之發展方向。為了合成符合臨床應用上之磁性奈米顆粒,首先必須在各種變因下測試材料發熱能力,以期建立找出適當之材料合成方法與使用條件。本研究以自製之高功率交流磁場產生裝置,在輸出頻率93kHz ~243kHz,磁場強度3kA/m~4.7kA/m之範圍內進行發熱能力試驗,試驗中以材料單位重量之發熱量(SAR,即比吸收率)作為評估之依據。在顆粒特性測試方面,藉由添加不同量之月桂酸所合成出不同尺寸之磁性奈米顆粒,經過XRD量測結果得知,合成之顆粒主要物種為四氧化三鐵。在磁場頻率156kHz,強度4.3kA/m加熱條件下,平均粒徑尺寸12.2nm之顆粒發熱量約為3.7W/g,此結果比平均粒徑尺寸7.7 nm者高出近5倍程度。此外,在交流磁場產生裝置可輸出之頻率與強度範圍內,顆粒之發熱量會隨著此兩種變因之提高而有明顯增加之效果。至於濃度低於0.05g/mL之磁性奈米顆粒,其發熱量受到濃度之影響較小,但對於濃度到達0.1g/mL,其發熱能力除了降至不到一半,樣品也有明顯聚集現象。在模擬生物體內蛋白質環境方面,在204kHz及4.3kA/m條件下,月桂酸包覆之磁性奈米顆粒,其發熱能力會從10.5W/g下降至8W/g,推論可能原因為包覆材月桂酸與牛血清白蛋白產生作用,造成顆粒粒徑增加,影響發熱能力。至於以幾丁聚醣及聚乙烯亞胺所包覆之磁性奈米顆粒,雖然發熱能力僅約月桂酸包覆者的50%能力,但在白蛋白存在下不會影響其發熱能力,推論白蛋白不會與中性環境下帶正電荷之幾丁聚醣及聚乙烯亞胺產生作用所致。在模擬黏滯度環境方面,月桂酸包覆之磁性奈米顆粒材料,當甘油濃度從0%增加至75%,發熱量從10.0W/g下降至5.3W/g。此結果間接證明,下降之發熱能力可能由布朗損失所導致。對於利用幾丁聚醣及聚乙烯亞胺所包覆之磁性奈米顆粒而言,發熱能力雖然也會隨黏滯度提高而下降,但其下降斜率卻僅是約月桂酸包覆者之1/3。因此可知月桂酸者極易受黏滯度所影響。至於模擬電解質環境方面,對於月桂酸包覆之磁性奈米顆粒而言,即使僅加入低濃度6.25mM之氯化鈉,顆粒之發熱量也會從10.5W/g降至6W/g程度。由於樣品在配製過程中產生快速聚集與沉澱現象,推論原因可能來自離子遮蔽相互排斥所致。對於以幾丁聚醣包覆之磁性奈米顆粒而言,氯化鈉濃度高於150mM時發熱量即開始受影響,推論可能與高濃度氯化鈉會造成幾丁聚醣膨潤,導致顆粒變大而影響發熱能力。至於以聚乙烯胺包覆之磁性奈米顆粒來說,則不會受到氯化鈉之影響。綜合以上結果,為了合成出適當之磁性奈米顆粒,粒徑尺寸需控制在12nm~17nm左右,濃度0.05g/mL以下,在充份分散後,藉由提高磁場強度及磁場頻率即可達到高發熱效果。包覆材方面,應避免選用易受生物體環境影響之離子性長鏈脂肪酸,可使用生物可相容之幾丁聚醣及聚乙烯亞胺作為包覆材料。如此藉由高分子不同之特性,可應用於不同生物體環境中,這些結果可提供往後進一步研究與應用之基礎資料。
The hyperthermia using superparamagnetic nanoparticles, magnetite (Fe3O4), as a thermoseed is a promising solution for tumor therapy. The aim of this study was to investigate the heating of superparamagnetic nanoparticles influenced by physical and environmental factors under alternating current field. Nanosized magnetite was prepared by chemical co-precipitation method using Fe2+, Fe3+ salt, and sodium hydroxide under a nitrogen atmosphere. The nanoparticles were characterized by transmission infrared spectroscopy and X-ray diffraction. The specific absorption rate (SAR) values of aqueous suspensions of magnetite particles with different diameters varying from 7.7 to 13.4 nm were investigated by measuring the time-dependent temperature curves in the magnetic fields of various strength (3~4.7 kA/m) and frequency. (93~243 kHz). Results indicate that the SAR values increase with magnetic fields strength and frequency. The linear dependencies were also obtained between SAR and the square of the field strength. As magnetite diameter increased from 7.7 to 13.4 nm, SAR value increased from 0.7 to 3.7 W/g(Fe3O4).
Aggregation behavior of magnetite in physiological media (high saline concentration, protein concentration and viscosity) is essential for biomedical applications. This parameter varied strongly with the nature of coating. For laurate-stabilized magnetic nanoparticles in BSA(bovine serum albumin) solution, SAR values reduced from 10.5W/g to 8W/g. It was suggested the larger size nanoparticles due to the interaction between BSA and lauric acid were generated However, for chitosan or polyethylenimine(PEI)-stabilized magnetic nanoparticles in same solution, their SAR values were not influenced , which it was suggested that the two surfactants with positive charges might not interact with BSA. For laurate-stabilized magnetic nanoparticles in different viscosty solution, prepared by glycerin, SAR values reduced with the viscosity, 0.9~47cP from 10.0W/g to 5.3W/g, suggested that it is due to the loss of heating capacity from Brownian relaxation mechanism. This phenomenon is also same as chitosan or PEI-stabilized magnetic nanoparticles. However, the slopes of reducing SAR values for later two surfactants were lower than laurate-stabilized ones. For laurate-stabilized magnetic nanoparticles in electrolyte solution, prepared by NaCl, SAR values reduced from 10.5W/g to 6W/g, even if the concentration of NaCl is 6.25mM. As the result of the aggregation and precipitation happened during sample preparation, so it was suggested that the reduced SAR values were due to the repulsion force loss by ions between magnetic nanoparticles. For chitosan-stabilized magnetic nanoparticles in the same solution, SAR values would be reduced while the NaCl concentration in the solution is above 150mM, suggested that it was due to the swelling of chitosan under high NaCl concentration, so large size nanoparticles were generated. However, for PEI-stablized magnetic nanoparticles, SAR values were not influence under the same condition.
In conclusion, in order to synthesize magnetic nanoparticles with high SAR values, the size range controlled within 12nm~17nm, concentration below 0.05g/mL and the high frequency and strength magnetic filed applied were necessary. In addition, for clinical application the long chain fatty acid with COO- function group should be avoided to use and the biocompatible polymer, such as chitosan or PEI were suggested to use for different physiological media.
摘要 iv
目次 vi
表目錄 viii
圖目錄 ix
第一章 前言 1
第二章 文獻回顧 2
2.1鐵磁性材料特性簡介 2
2.2鐵磁性材料發熱機制簡介 7
2.3磁性奈米顆粒發熱機制 12
2.3.1 發熱機制簡介 12
2.3.2 數學模式推導 14
2.4 影響磁性奈米顆粒發熱能力之簡介 16
2.5 磁性奈米顆粒之應用近況簡介 25
第三章 實驗方法 32
3.1實驗設備與藥品 32
3.1.1 實驗藥品 32
3.1.2 實驗儀器 33
3.1.3 實驗流程圖 34
3.1.4 不同尺寸之磁性奈米顆粒合成方式 35
3.1.5 幾丁聚醣包覆磁性奈米顆粒樣品配置 35
3.1.6 聚乙烯亞胺包覆磁性奈米顆粒樣品品配置 36
3.1.7 發熱試驗樣品配置 36
3.1.8 發熱能力試驗及計算方式 36
3.1.9 空白試驗 37
3.2高頻功率磁場產生器 39
第四章 結果與討論 41
4.1顆粒尺寸 vs 發熱量 41
4.2磁場強度 vs SAR 50
4.3磁場頻率vs SAR 53
4.4顆粒濃度vs SAR 55
4.5蛋白質vs SAR 58
4.6黏滯度vs SAR 65
4.7鹽類濃度vs SAR 73
第五章 結論 78


參考文獻 80

表目錄
表2.1 磁性奈米顆粒以不同溶劑配置後之發熱量結果 24
表2.2 經過不同次數治療後老鼠腫瘤體積減小之結果 26
表2.3 藉由氧化鐵陽離子脂質體進行溫熱法後老鼠腫瘤體積減小之結果 30
表4.1 不同溫度與濃度下,甘油溶液黏滯度ㄧ覽表 67


圖目錄
圖2.1 外加磁場對磁域之影響 3
圖2.2 磁滯曲線圖 4
圖2.3 超順磁性奈米顆粒磁化曲線圖 6
圖2.4 磁場感應之渦流電流 8
圖2.5 以磁滯損失作為發熱機制之不同尺寸顆粒矯頑力與SAR值 10
圖2.6 交流磁場下磁性奈米顆粒鬆弛方式 13
圖2.7 多磁區鐵磁性顆粒與奈米磁性顆粒隨磁場強度變化之發熱量圖 18
圖2.8 磁性奈米顆粒之磁分選裝置示意圖 19
圖2.9 磁性奈米顆粒經過不同磁場強度分選後顆粒尺寸及其分佈結果 20
圖2.10 磁性奈米顆粒磁分選前/後各個尺寸顆粒之發熱量結果 21
圖2.11 磁性奈米顆粒在濃度32%(w/w)以下之發熱量結果 22
圖2.12 兩種磁性性奈米顆粒以水或乾油稀釋後發熱量隨頻率上升之結果 23
圖2.13 磁性奈米顆粒溫熱法測試時加熱處及周圍組織溫度變化結果 28
圖2.14 以糊精包覆之磁性奈米顆粒進行溫熱法治療之結果 29
圖2.15 藉由氧化鐵陽離子脂質體進行溫熱法後老鼠腫瘤體積減小狀況 31
圖3.1 實驗流程方塊圖 34
圖3.2 發熱能力試驗初始上升溫度斜率與線性迴歸結果 37
圖3.3 高頻功率磁場產生裝置結構圖 39
圖3.4 高頻功率磁場產生裝置迴路方塊圖 40
圖4.1 不同月桂酸加入量所合成之磁性奈米顆粒XRD衍射曲線圖 43
圖4.2 Fe3O4之XRD衍射圖譜 44
圖4.3 不同月桂酸加入量所合成之磁性奈米顆粒TEM圖 45
圖4.4 不同月桂酸加入量所合成之磁性奈米顆粒尺寸分布圖 46
圖4.5 三種月桂酸加入量合成之磁性奈米顆粒發熱試驗結果 47
圖4.6 不同月桂酸加入量所合成之磁性奈米顆粒發熱量結果 48
圖4.7 去離子水發熱量結果 49
圖4.8 不同磁場強度之發熱量結果 52
圖4.9 磁場強度平方之與發熱量之線性關係結果 53
圖4.10不同磁場頻率下,磁場強度平方與顆粒發熱量之結果 55
圖4.11濃度之磁性奈米顆粒發熱結果 57
圖4.12不同濃度之白蛋白加入後三種包覆材料之磁性奈米顆粒發熱量結果
(測試條件:樣品濃度0.025g/mL,磁場強度4.3kA/m,磁場頻率204kHz) 61
圖4.13 不同長鏈脂肪酸與白蛋白結合能力曲線圖 62
圖4.14幾丁質與幾丁聚醣之化學結構式 63
圖4.15 聚乙烯亞胺(PEI)之化學結構式 63
圖4.16 白蛋白濃度2mg/mL發熱試驗結果 64
圖4.17 血比容影響全血及血漿黏滯度之曲線圖 68
圖4.18 不同甘油濃度下三種包覆材料之磁性奈米顆粒發熱量結果 69
圖4.19 不同甘油濃度下月桂酸包覆之磁性奈米顆粒發熱量下降比例圖 70
圖4.20 隨甘油濃度提高三種包覆之磁性奈米顆粒發熱能力下降斜率圖 71
圖4.21 100%甘油發熱試驗結果 72
圖4.22 不同氯化鈉濃度下三種包覆材之磁性奈米顆粒發熱量結果 75
圖4.23 含有氯化鈉之磁性奈米顆粒樣品(包覆材為月桂酸) 76
圖4.24 濃度1M氯化鈉發熱試驗結果 77
[1] 林嘉雄,張煦,” 磁工學(上)(Magnetic Technology)”,科學月刊,1972年2月26期
[2] 鄭振東 編輯,”實用磁性材料”,全華科技圖書股份有限公司,民88,初版
[3] 江昭暟,謝芳生 譯,”工程電磁學”,台灣東華書局股份有限公司,民91,
第六版
[4] 國立台北科技大學光電科技系物理組教師 編譯,”普通物理(下)”,高立圖書有限公司,民92,第二版
[5] 黃忠良 編著,”磁性流體理論應用”,復漢出版社,1998
[6] C. L. Chiang, C. S. Sung, C. Y. Chen,” Application of silica –magnetite nanocomposites to the isolation ofultrapure plasmid DNA from bacterial cells”, Journal of Magnetism and Magnetic Materials 305 (2006) 483–490
[7] A. Jordan, P. Wust, H. Faehling, J. Krause, W. John, A. Hinz, R. Felix,”Inductive heating of ferromagnetic particles and magnetic fluids: physical evaluation of their potential for hyperthermia”, Int. J. Hyperthermia, Vol 9, No. 1(1993) pp.51-68.
[8] http://en.wikipedia.org/wiki/Eddy_current
[9] M. Ma, Y. Wu, J. Zhou, Y. K. Sun, Y. Zhang, N. Gu,”Size dependence of specific power absorption of Fe3O4 particles in AC magnetic field”, Journal of Magnetism and Magnetic Materials 268 (2004) 33–39.
[10] J. Giri, P. Pradhan, T. Sriharsha and D. Bahadura,” Preparation and investigation of potentiality of different soft ferrites for hyperthermia applications”, Journal of applied physics 97, 10Q916 s2005d
[11] X. Wang, H. C. Gu, Z. Q Yang,” The heating effect of magnetic fluids in an alternating magnetic field”, Journal of Magnetism and Magnetic Materials 293 (2005) 334-340.
[12] R. Hergt, R. Hiergeist, M. Zeisberger, G. Gl.ockl, W. Weitschies, L.P. Ramirez, I. Hilger, W.A. Kaiser,” Enhancement of AC-losses of magnetic nanoparticles for heating applications”, Journal of Magnetism and Magnetic Materials 280 (2004) 358–368
[13] R. Hergt, R. Hiergeist, I. Hilger, W.A. Kaiser, Y. Lapatnikov, S. Margel, U. Richter,” Maghemite nanoparticles with very high AC-losses for application in RF-magnetic hyperthermia”, Journal of Magnetism and Magnetic Materials 270 (2004) 345–357
[14] C Caizer,” The effect of the external magnetic field on the thermal relaxation of magnetization in systems of aligned nanoparticles”, J. Physics: Condensed Matter 17 (2005) 2019–2034
[15] P.C. Fannin,” Investigating magnetic fluids by means of complex susceptibility measurements”, Journal of Magnetism and Magnetic Materials 258–259 (2003) 446–451
[16] M. Gonzales, K. M. Krishnan,” Synthesis of magnetoliposomes with monodisperse iron oxide nanocrystal cores for hyperthermia”, Journal of Magnetism and Magnetic Materials 293 (2005) 265–270
[17] A. Wijaya, K. A. Brown, J. D. Alper, K. H. Schifferli,” Magnetic field heating study of Fe-doped Au nanoparticles”, Journal of Magnetism and Magnetic Materials 309 (2007) 15–19
[18] R. E. Rosensweig,” Heating magnetic fluid with alternating magnetic field”, Journal of Magnetism and Magnetic Materials 252 (2002) 370-374
[19] P.C. Fannin, B. K. P. Scaife, S. W. Charles,” The measurement of the frequency dependent susceptibility of magnetic colloids”, Journal of Magnetism and Magnetic Materials 172 (1998) 95-108
[20] P.C. Fannin, S. W. Charles,” The study of a ferrofluid exhibiting both Brownian and Néel relaxation”, Journal of Physics D: Applied Physics
22(1998) 187-191
[21] P.C. Fannin,_, L. C. Tannoudji, E. Bertrand, A.T. Giannitsis, C. M. Oireachtaigh, J. Bibette,” Investigation of the complex susceptibility of magnetic beads containing maghemite nanoparticles”, Journal of Magnetism and Magnetic Materials ] (2005) ]]]–]]]
[22] 楊文胜, 高明遠, 白玉白 編著,” 納米材料與生物科技”, 化學工業出版社, 2005
[23] D. C. F. Chan, D. B. Kirpotin, P. A. Bunn, Jr,” Synthesis and evaluation of colloidal magnetic iron oxides for the site-specific radiofrequency-induced hyperthermia of cancer”, Journal of Magnetism and Magnetic Materials 122 (1993) 374-378
[24] D. C. F. Chan, D. B. Kirpotin, P. A. Bunn, Jr,”Physical chemistry and in vivo tissue heating properties of colloidal magnetic iron oxides with increased power absorption rates”, in Scientific and Clinical Applications of Magnetic Carriers, edited by U. Häfeli, W. Schütt, J. Teller, M. Zborowski(Plenum Press, New York, 1997), pp.607
[25] L. L. Lao, R. V. Ramanujan, “ Magnetic and hydrogel composite materials for hyperthermia applications”, Journal of materials science:materials in medicine 15(2004)1061-1064
[26] T. Rheinlämnder, R. Kötitz, W. Weitschies, W. Semmler,” Magnetic fractionation of magnetic fluids”, Journal of Magnetism and Magnetic Materials 219 (2000) 219}228
[27] A. Jordan, T. Rheinl¨ander, Norbert Wald¨ofner and Regina Scholz,” Increase of the specific absorption rate (SAR) by magnetic fractionation of magnetic fluids”, Journal of Nanoparticle Research 5: (2003) 597–600.
[28] D. H. Kim, S. H. Lee, K. H. Im, K. N. Kim, K. M. Kim, I. B. Shim, M. H. Lee, Y. K. Lee, “ Surface-modified magnetite nanoparticles for hyperthermia:preparation, characterization, and cytotoxicity studies”, Current Applied Physics (2006) e242 -e246
[29] M. F. Tai, K. M. Chi, K. H. W. Lau, D. J. Baylink and S. T. Chen, “Generation of magnetic retroviral vectors with magnetic nanoparticles”, Reviews on advanced materials science (2003)319-323
[30] Z.M. Saiyed, S.D. Telang and C.N. Ramchand,” Application of magnetic techniques in the field of drug discovery and biomedicine”, BioMagnetic Research and Technology 1(2003)1-8
[31] M. Shinkai,” Functional Magnetic Particles for Medical Application”, Journal of bioscience and bioengineering Vol. 94, No. 6,606-613. 2002
[32] S. Mornet, S. Vasseur, F. Grasset and E. Duguet,” Magnetic nanoparticle design for medical diagnosis and therapy”, Journal of Materials Chemistry 14 (2004) 2161–2175
[33] A. Jordan, P. Wust, R. Scholz, H. Faehling, J. Krause, R. Felix, “Magnetic fluid hyperthermia(MFH)”, In Scientific and Clinical Applications of Magnetic Carriers, edited by U. Häfeli, W. Schütt, J. Teller, M. Zborowski(New York, London: Plenum Press), pp. 569-595.
[34] Q A Pankhurst, J Connolly, S K Jones and J Dobson,” Applications of magnetic nanoparticles in biomedicine”, J. Phys. D: Appl. Phys. 36 (2003) R167–R181
[35] Dong-Lin Zhao, Hai-Long Zhang, Xian-Wei Zeng, Qi-Sheng Xia and Jin-Tian Tang,” Inductive heat property of Fe3O4/polymer composite nanoparticles in an ac magnetic field for localized hyperthermia”, Biomed. Mater. 1(2006) 198-201
[36] N. A. Brusentsov, A. A. Shevelev, T. N. Brusentsova, A. A. Kuznetsov,O. A. Kuznetsov, L. Kh. Komissarova, G. S. Nechitailo, L. A. Goncharov, F. S. Baiburtskii, and L. I. Shumakov,” Magnetic-fluid induction regional hyperthermia of Sarcoma”, Pharmaceutical Chemistry Journal Vol. 36, No. 3, 2002
[37] F. Matsuoka, M. Shinkai, H. Honda, T. Kubo, T. Sugita and T. Kobayashi,” Hyperthermia using magnetite cationic liposomes for hamster osteosarcoma”, BioMagnetic Research and Technology 2004, 2
[38] A. Jordan, R. Scholz_, K. M. Hau, M. Johannsen, P. Wust, J. Nadobny, H. Schirra, H. Schmidt, S. Deger, S. Loening, W. Lanksch, R. Felix,” Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia”, Journal of Magnetism and Magnetic Materials 225 (2001) 118~126
[39] M. Johannsen, U. gneveckow, L. eckelt, A. feussner, N. Waldöfner, R. Scholz, S. Deger, P. Wust, S. A. Loening, A. Jordan,” Clinical hyperthermia of prostate cancer using magnetic nanoparticles: Presentation of a new interstitial technique”, Int. J. Hyperthermia, November 2005; 21(7): 637–647
[40] http://en.wikipedia.org/wiki/Glycerol
[41] “應用於感應加熱的負載並聯共振電流型反流器設計與研製”, 蘇卓盛, 中原大學電機工程學系碩士學位論文, 民92.
[42] “應用於感應加熱的負載串聯共振電壓型反流器設計與研製”, 許國展, 中原大學電機工程學系碩士學位論文, 民91.
[43] “全橋相移柔性切換負載並聯共振電流型感應加熱器之設計與研製”, 劉明峰, 中原大學電機工程學系碩士學位論文, 民93.
[44] L, J. Iuan ; S. Kurikka V. P. M. ; U. Abraham ; L. Katja , Y. Lee, V. Thomas ; W. L. Lee ; N. P. ONG ,” Controlling the size of magnetic nanoparticles using pluronic block copolymer surfactants”, Journal of physical chemistry. B, Condensed matter, materials, surfaces, interfaces, & biophysical chemistry , 2005, vol. 109, no1, pp. 15-18
[45] 傅祖慶 翻譯總校閱, 林富美, 林則彬, 賴亮全 合譯,” 蓋統生理學-生理及疾
病機轉”, 華杏出版股份有限公司, 1995, 第二版
[46] “Albumin , Bovine”, CAS Number:9048-46-8, SIGMA product information
[47] A. Arthur. Spector, K. Y. JOHN, and J. E. Fletxher,” Binding of long-chain fatty acids to bovine serum albumin”, Journal of LIPID Research Volume10 , (1969)56-67
[48] 莊仲揚,陳俊男,”幾丁聚醣於生醫產業上的應用”,化工資訊與商情月刊 38期
[49] 郭豪飛,”幾丁聚醣丙酸水溶液之光散射研究”,元智大學化工所碩士論文,89年
[50] 林志仲,李振綱,”PEI薄膜純化質體DNA”, 國立台灣科技大學化工系研究所碩士論文
[51] Blessing,T., Kursa,M., Holzhauser,R. Kircheis,R. and Wagner,E. (2001). Different strategies for formation of PEGylated EGF-conjugated PEI/DNA complexes for targeted gene delivery. Bioconjug. Chem. 12, 529-537
[52] 宋錦珊,”超順磁性氧化鐵奈米粒子在質體DNA純化上之應用”,南台科技大學生物科技系碩士論文,93年
[53] http://www4.ncsu.edu/~hubbe/PEI.htm
[54] 張炳暄 主編,” 流體力學概論”, 新文京開發出版股份有限公司, 民93
[55] 陳家榮,”微血管內血球濃度變化對流阻之影響”, 崑山科技大學機械工程系
碩士論文, 民95
[56] http://lhtc.epfl.ch/webdav/site/lhtc/shared/import/migration/2%20VISCOSITY.pdf
[57] http://www.cvphysiology.com/Hemodynamics/H011.htm
[58] http://pgchemicals.com/resources/statements/ViscositiesofGlycerineSolutions.pdf
[59] http://www.benbest.com/cryonics/cooling.html
[60]鄭俊楠,胡孝光,”幾丁聚醣水膠中電解質鹽濃度對Donnan 比的影響”,國立
台灣科技大學 纖維暨高分子工程系碩士論文
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔