參考文獻
一、英文部分
[ABA88]Allionemi, O.P., Blanco, G., & Alavaikko, M., Improving the prognostic valve of DNA flow cytometry in breast cancer by combining DNA index and S-phase fraction, Cancer,1998,Vol. 62, pp.2183-2190.
[B96]Breiman, L., Bagging Predictors, Machine Learning, 1996,Vol. 24, No. 2, pp.123-140.
[BL97]Berry, M. J. A. & Linoff, G., Data Mining Techniques: For Marketing, Sales and Customer Support, John Wiley & Sons Inc.,1997, pp.286-334.
[BR57]Bloom, H.J, & Richardson, W.W., Histological grading and prognosis in breast cancer, Br J Cancer 11,1957, pp.359-77.
[CHS97]Cabena, P., Hadjinian, P., Stadler, R., Verhees, J., & Zanasi, A., Discovering Data Mining: From Concept to Implementation, Prentice Hall, 1997.
[CLG02]Chan, K. L. , Lee, T. W. , Goldbaum, M. H. , Weinreb, R. N. , & Sejnowski, A. T. J., Comparison of machine learning and traditional classifiers in glaucoma diagnosis. IEEE Transactions on Biomedical Engineering, 2002, Vol. 49, pp.963-974.
[CNK04]Cantu-Paz, E., Newsam, S., & Kamath, C., Feature Selection in Scientific Applications. Proceedings of ACM International Conference on Knowledge Discovery and Data Mining,2004, pp.788-793.
[CS00]Cristianini N., & Shawe-Taylor J., An Introduction to Support Vector Machines and other Kernel-based Learning Methods, Cambridge,2000
[DGA05]Dursun D., Glenn, W., & Amit, K., Predicting breast cancer survivability:a comparison of three data mining methods, artifical intelligence in medicine, 2005, Vol. 34 ,pp.113-27.
[F86]Fisher E. R., Prognostic and therapeutic significance of pathological features of breast cancer. NCL Monogr, 1986, Vol. 1, pp.29-34.
[FS97]Freund, Y. & Schapire, R.E., A decision-theoretic generalization of on-line learning and an application to boosting, Journal of Computer and System Sciences, 1997, Vol. 55, pp.119-139.
[GWS95]Goldhirsch A.,Wood W. C., & Senn H. j., Commentary. Meeting Highlights :International Consensus panel on the treatment of primary breast cancer. J Natl cancer Inst, 1995, pp.87-1441.
[H00]Hall, M., Correlation-based feature selection for discrete and numeric class machine learning, Proceedings of the Seventeenth International Conference on Machine Learning, 2000.
[HC80]Henderson I. C., & Canellous G. P., Cancer of the breast: The past decade, J Natl cancer Inst, 1980, pp.17-30.
[HCH04]Huang, Z., Chen, H., Hsu, Chia-Jung., Chen, Wun-Hwa., & Wu, S., Credit rating analysis with support vector machines and neural networks: a market comparative study, Decision Support Systems, 2004, Vol. 37, pp.543-558 .
[HLVW92]Harris J. R., Lippman M. E., Veronesi U., & Willett W., Breast cancer, part 2, N Eng. J med, 1992, pp.327-473.
[HS98]Hall, M., & Smith, L., Practical Feature Subset Selection for Machine Learning. Proceedings of the 21st Australian Computer Science Conference, 1998, pp.181-191.
[JJGJE03]Jose’ M., Jose’ A., Gonzalo R. J., & Jose’ M. P., A combined neural work and decision trees model for prognosis of breast cancer replase, artificial intelligence in medicine, 2003, pp.45-63.
[KJK03]Kulkarni, A., Jayaraman, V. K., & Kulkarni, B. D., Control of chaotic dynamical system using support vetor machines, Physics Letter A , 2003, Vol. 317, pp.429-435.
[KLR97]Kennedy, L., Lee, Y., Roy, V. B., Reed, C. D., & Lippman, R. P., Solving Data Mining Problems through Pattern Recognition, Prentice Hall,1997
[OGM94]O’Rourke S., Galea M. H.,& Morgan D., Local recurrence after simple mastectomy, Br. J. Surg., 81, 1994,pp.386-9.
[Q86]Quinlan, J. R., Induction of Decision Tree, Machine Learning, 1986, Vol. 1, No. 1, pp.81-106.
[Q93]Quinlan, J. R., C4.5: Programs for Machine Learning, Morgan Kaufmann, 1993.
[RGS89]Rosen P. P., Groshen S., & Saigl E.E., A long-term follow-up study of survival in stage I(T1N0M0) and Stage II(T1N!M0) breast carcinoma, J.Clin.Oncol., 1989, Vol. 7, pp.355-66.
[RHH94]Ries L.A., Henson D. E., & Harras A., Survival from breast cancer according to tumor size and nodal status, Surg. Oncol .Clin. North Am, 1994, Vol. 3, pp.35-52.
[S90]Schapire, R. E., The strength of weak learnability, Machine Learning, 1990, Vol. 5, pp.197-227.
[S94] Street,N. W., Cancer diagnosis and prognosis via linear-programming-based machine learing,Available as UW mathematical programmn technical report, 1994, pp.94-14.
[S99]Simon, H., Neural Networks : A Comprehensive Foundation, 1999, pp.351-355.
[WBS97]Wong, B. K., Bonovich, T. A., & Selvi, Y., Neural Network Applications in Business: A Review and Analysis of the Literature, Decision Support Systems, 1997, Vol. 19, pp.301-320.
[WEKA]http://www.cs.waikato.ac.nz/~ml/weka/index.html
[WF00]Witten, I. H. & Frank, E., Data Mining: Practical Machine Learning Tools with Java Implementations, Morgan Kaufmann, 2000.
二、中文部分
[王景南03]王景南,多類支向機之研究,元智大學資訊管理研究所碩士論文,2003年。[林諺熙05]林諺熙,應用支撐向量機法於保險詐欺之預判,國立成功大學工業與資訊管理學系碩士在職專班碩士論文,2005年。
[吳秋文03]吳秋文,乳房疾病與乳癌,吳氏圖書有限公司,2003年。
[黃建銘05]黃建銘,支援向量機的參數選擇,國立台灣科技大學資訊工程所碩士論文,2005年。
[梁定澎04]梁定澎,決策支援系統與企業智慧,台北:智勝圖書公司,2004年。
[楊雅婷02]楊雅婷、郭雅君譯,乳房聖經上冊、下冊,天下生活出版股份有限公司,2002年。
[國家衛生研究院04]乳癌診斷與治療共識,國家衛生研究院癌症研究組,2004年。
[世界衛生組織統計資料] http://www.who.int/features/qa/15/zh/index.html
[行政院衛生署國民健康局癌症年報] http://www.doh.gov.tw/statistic/index.htm