跳到主要內容

臺灣博碩士論文加值系統

(3.235.120.150) 您好!臺灣時間:2021/07/31 15:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭宗展
研究生(外文):Cheng Tsung Chan
論文名稱:低溫多晶矽製程技術及利用薄膜光柵改善太陽能電池特性研究
論文名稱(外文):The Studies of Low Temperature Ploy-Silicon Processing Issue and Thin-Film Grating for Solar Cell Performance Improvement
指導教授:張文俊張文俊引用關係
指導教授(外文):Chang Wen Chung
學位類別:博士
校院名稱:南台科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:80
中文關鍵詞:反射式繞射光柵反射率
外文關鍵詞:gratingalbedo
相關次數:
  • 被引用被引用:0
  • 點閱點閱:176
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要分為兩大主題,分別為針對現有之低溫多晶矽製程技術做一改善及提升太陽能電池特性中之功率轉換效率兩個研究方向。
在低溫多晶矽製程技術方面;由於利用準分子雷射回火使非晶矽(a-Si)薄膜轉變為多晶矽(Poly-Si)之技術已被證實其可行性,且如何使多晶矽最佳化也一再的被討論。本論文針對不同的結晶氣體環境對多晶矽成模的影響、雷射功率對晶粒大小及晶粒凸起高度的影響、臨界雷射功率在不同氣體環境下對表面爆裂的影響三方面來討論。由實驗發現在98%N2混合2%O2的氣體環境中,可提升其製程窗由原來的30mJ/cm2提升到50mJ/cm2,而產生爆裂的臨界雷射功率也由320mJ/cm2提升至390mJ/cm2。
提升太陽能電池特性中之功率轉換效率方面;對矽而言正常照光下在矽表面的的光反射率約為30~35%,若能將這30~35%的反射光加以利用便能提升太陽能電池的效率。因此本論文主要是利用高分子繞射光柵模仁於太陽能板上製作一層深度為212.24 nm、週期為0.52μm及反射率為5.9%之光柵,利用光柵反射特性來提升太陽能電池其受光時間,進而提升功率轉換效率。
This paper is mainly discussing two topics: to improve the method of Low Temperature Ploy-Silicon and enhance the amount of power transforming to efficiency in solar cell.
In the part of Low Temperature Ploy-Silicon.The feasibility to transform LPCVD a-Si into Poly-Si by using excimer laser annealing has been approved. More discussion and study on how to make optimization on Poly-Si are also proceeding. Excimer laser annealing (ELA) amorphous silicon (a-Si) to poly-silicon (poly-Si) in different gas environment is studied, i.e. N2 or N2 mixed O2:2%, Influence of laser power on the surface morphology, grain size and height of gibbous grain is investigated. The variation of threshold laser power for the generation of surface ablation in N2 and N2:98% mixed O2:2% environment is also discussed. From experiment, it is found that the combination of O2:2% enhance the threshold laser power for the generation of surface ablation from 320mJ/cm2 to 390mJ/cm2. In the condition of average grain over 0.25um, the process window is 30mJ/cm2 for N2, but is 50mJ/cm2 for N2 mixed O2:2% environment.
In the part of improve the power conversion efficiency of solar energy by using the reflection character of grating. Under normal sunlight, light albedo of silicon surface falls between 30% ~ 35%, we can improve the battery power for solar energy by using 30%~35% reflection light. Therefore, the study of this thesis is to use high polymer diffraction grating mold on solar plates by coating with a layer of 212.24 nm depth , 0.52μm circle and grating of 5.9% albedo used for improve the light receiving of solar battery and further enhance the power conversion efficiency.
目 錄
摘要................................................................................................................................. iv
致謝..................................................................................................................................vi
目錄…….........................................................................................................................vii
表目錄...............................................................................................................................x
圖目錄..............................................................................................................................xi
第一章 簡 介.................................................................................................................1
1.1 論文架構.......................................................................................................1
1.1.1 低溫多晶矽製程技術之研究背景.....................................................1
1.1.2 薄膜光柵改善太陽能電池特性之研究背景.....................................1
1.2 研究動機.......................................................................................................2
1.2.1 低溫多晶矽製程技術之研究動機.....................................................2
1.2.2 薄膜光柵改善太陽能電池特性之研究動機.....................................2
1.3 論文架構.......................................................................................................3
第二章 準分子雷射退火使用在低溫多晶矽形成的最佳化.......................................2
2.1 多晶矽………………………...….................................................................5
2.2 多晶矽(LTPS)成膜技術種類………….………………………...................7
2.2.1 直接沈積型成膜技術.........................................................................7
2.2.2 再結晶型成膜技術.............................................................................8
2.2.2.1 固相結晶法…..........................................................................8
2.2.2.2 金屬引發側向結晶法..............................................................8
2.2.2.3 準分子雷射結晶……..............................................................9
2.2.3 成膜技術比較………………….........................................................9
2.3 準分子雷射架構及結晶原理……..……...…….…....................................11
2.3.1準分子雷射結晶成膜機制................................................................12
2.4 氫爆(Ablation)……………...………….……….........................................14
2.5 實驗步驟與環境設定……...…...…….………...........................................16
2.5.1 非晶矽形成…………………...........................................................17
2.5.2 準分子雷射系統……………...........................................................18
2.5.3 準分子雷射退火之氣體環境...........................................................19
2.6 實驗結果……………..................................................................................20
2.6.1 多晶矽薄膜表面氣爆現象分析.......................................................21
2.6.1.1 退火環境氣體對表面氣爆之影響........................................21
2.6.1.2 雷射能量密度在不同的退火氣體環境下對氣爆的影響....23
2.6.2 不同退火氣體環境下對晶粒尺寸的影響.......................................24
2.6.3 不同退火氣體環境下對晶粒高度的影響.......................................26
2.7 結論………….……….................................................................................28
第三章 以反射光柵來提升太陽能的功率轉換效率.................................................29
3.1 光伏元件原理..............................................................................................29
3.1.1 pn接面光伏I-V特性......................................................................32
3.1.2 填充因子與功率轉換效率...............................................................36
3.1.3 最大輸出功率(Pm)計算方法………................................................37
3.2 現行提高太陽能電池功率轉換效率方法…………………….................38
3.2.1 改變太陽能電池元件材料...............................................................38
3.2.2 集光式太陽能電池...........................................................................39
3.2.3 現行方法之比較...............................................................................40
3.3 具反射式繞射光柵之太陽能電池..............................................................41
3.3.1開路電壓與反射率............................................................................42
3.4 光柵元件......................................................................................................44
3.4.1 振幅光柵(amplitude grating ) ..........................................................45
3.4.2 相位光柵(phase grating) ..................................................................45
3.4.3 體積光柵(volume grating) ................................................................45
3.4.4 薄膜光柵(thin grating)......................................................................45
3.4.4.1 穿透式繞射元件....................................................................46
3.4.4.2 反射式繞射元件.........................….......................................47
3.5 光柵製作原理…………...……...................................................................50
3.5.1 現行光柵製作方法……………........................................................50
3.5.2 高分子反射式繞射元件製作方法....................................................50
3.5.3 全像術干涉微影……………............................................................51
3.6 反射式繞射光柵製程流程..........................................................................53
3.7 光柵翻模實驗流程......................................................................................57
3.7.1 光阻材料繞射光柵與OG高分子材料繞射光柵比較....................59
3.8 太陽能基板與反射式繞射光柵反射率量測……......................................61
3.9 實驗結果......................................................................................................64
3.9.1 具反射式繞射光柵太陽能電池之開路電壓....................................65
3.9.2 具反射式繞射光柵太陽能電池之短路電流....................................66
3.9.3具反射式繞射光柵太陽能電池之功率換效率.................................67
3.10結論.............................................................................................................69
第四章 未來展望...........................................................................................................70
參考文獻.........................................................................................................................71
附錄
A 不同感光時間之光柵AFM量測結……..…………………………………….78
作者簡介……………………………………………………………………………….80
1.H. Kimura, et al.,”A 2.15 inch QCIF Reflective Color TFT-LCD with Digital Memory on Glass(DMOG),” SID Digest of Tech. Papers Vol. XXXII, pp. 268~271, 2001
2.Z. Meng,M.Wang, M. wong,”High Performance Low Temperature Metal-Induced Unilaterally Crystallized Polycrystalline Silicon TFTs for System-on-Panel Applications,” IEEE, Vol.47,No.2,2000
3.J. Y. Tsao, P. S. Peercy, “Crystallization Instability at the Amorphous-Silicon / Liquid-Silicon Interface,” Phys Rev Lett Vol. 58, Num 26, pp. 2782-2785, 1987
4.James S. Im, H. J. Kim,”Phase transformation mechanism sinvolved in excimer laser crystallization of amorphous sillicon films,”Appt. Phys. Lett. 63 (14),1993
5.S. M. Fluxman,”Design and performance of digital polysilicon thin-film-transistor circuits on glass,” IEE Proceedings Circuits, Devices and Systems, Vol. 141, February 1994, pp. 56-59.
6.B. D. Choi, H. Jang, O. K. Kwon, H. G. Kim and M. J. Soh,“Design of Poly-Si TFT-LCD Panel with Integrated Driver Circuits for an HDTV/XGA Projection System,” IEEE Transactions on Consumer Electronics, February 2000, pp. 95-104.
7.D. M. Chapin, C. S. Fuller, and G. L. Pearson,”A New Silicon p-n Junction photocell for Converting Solar Radiation into Electrical Power,” J. Appl.Phys.,25,676,1954.
8.M. S. Green,”Solar Cell,” in S. M. Sze, Ed.,Modern Semiconductor Device Physics, Wiley Interscience, New York,1998.
9.F.C. Voogt, R. Ishihara,” A combined TEM and time-resolved optical reflectivity investigation into the excimer-laser crystallization of a-Si films,” Thin Solid Films 383, 2001.
10.沈觀葆,”全像太陽能集光器之研製,”國立台灣大學機械工程研究所碩士論文, 台北市,1988.

11.T. Ohzone, et al., “Ion-Implanted Ti Poly Crystalline-Silicon High Value Resistor for High density Poly Load Static RAM Application,” IEEE Trans. Electron Devices, Vol.32, p1749, 1985.
12.柯敦元,”雷射退火矽膜之晶粒位置控制技術開發,” 國立臺灣科技大學電子工程系碩士論文, 台北市,2005.
13.Do-Hyun Choi, Eiichi Sadayuki, Osamu Sugiura, and Masakiyo Matsumura, “Lateral growth of Poly-Si Film by Excimer Laser and Its Thin Film Transistor Application,” Jpn. J. Appl. Phys. Vol. 33, Part 1,No. 1A, pp. 70-74, 1994.
14.H. J. Kim, J. S. Im, ”New Excimer-Laser-Crystallization Method for Producing Large Grained and Grain Boundary Location Controlled Silicon Films for Thin Film Transistor,” Appl. Phys. Lett., Vol. 68, No. 11, pp. 1513-1515, 1996.
15.G. K. Giust, T. W. Sigmon, “High-Performance Thin-Film Transistors Fabricated Using Excimer Laser Processing and Grain Engineering,” IEEE Transaction on Electron Devices Vol. 45, No. 4, pp. 925-932, 1998.
16.J. S. Im, R. S. Sposili, and M. A. Crowder, “Single-Crystal Si Films For Thin-Film Transistor Devices’’, Appl. Phys. Lett., Vol. 70, No. 19, pp. 3434-3436, 1997.
17.Jae-Wook Kang, Jang-Joo Kim, Jinkyu Kim, Xiangdan Li, and Myong-Hoon Lee, “Low-loss and thermally stable TE-mode selective polymer waveguide using photosensitive fluoriated polyimide,” IEEE Photon. Technol.,vol.14, pp. 1297-1299, 2002.
18.A. Neyer, T. Knoche, and L. Müller, “Fabrication of low loss polymer waveguides using injection moulding technology,” Electron Lett., vol. 29, pp. 399-401, 1993.
19.友達科技中心(ATC),”低溫多晶矽技術”.
Available: http://www.auo.com/auoDEV/technology.php?sec=LTPS&ls=tc
20.D. B. Meakin, P. A. Coxon, P. Migliorato, J. Stoemenos, and N. A. Economou,” High-performance thin-film transistors from optimized polycrystalline silicon films,” Appl. Phys. Lett. Vol50, pp.1894, 1987.
21.張秋萍,黃天恆,”電漿技術應用於OLED阻氣膜介紹,” 化工資訊與商情, 2004

22.溫政國,”低溫複晶矽再結晶之研究,” 國立成功大學電機工程學系碩士論文, 台南市, 2001.
23.S. Inoue, M. Matsus, K. Kitawada, S. Takenake, S. Higashi, T. Ozqwa, Y. Matsueda, T. Nakazawa, and H. Ohshima, “425℃ poly-Si TFT technology and its application to large size LCD’s and integrated digital data drivers,” in Proc. Asia Display, p339-342, 1995.
24.張國平,張銘峰,”光電工程導論,”新科技書局,2001.
25.許招墉,” 光電工學概論,” 全華科技圖書出版公司,1996.
26.林文全,”KrF準分子雷射再結晶非晶矽薄膜應用於太陽能電池之研究,”國立成功大學機械工程學系碩士論文, 台南市, 2002.
27.陳志強,”LTPS低溫複晶矽顯示器技術,” 全華科技圖書出版公司,2004.
28.N. Kubo, N. Kusumoto. T. Inushima. and S. Yamazaki,”Characterization of polycrystalline-Si thin-film transistors fabricated by excimer laser annealing method,” IEEE Trans. Electron Devices vol.40, p1876-1879, 1994.
29.K. Winer, G. B. Anderson, S. E. Ready R. Z. Bachrach, R. I. Johnson, F. A. Ponce, “Excimer-laser-induced crystallization of hydrogenate amorphous silicon,” Appl. Phys. Lett. 57 (21), pp. 2222-2224, 1990.
30.Fortunato, L. Mariucci, R. Carluccio, A. Pecora, and V. Foglietti,”Excimer Laser Crystallization Techniques for Polysilicon TFTs,” Appl. Surf. Sci., Vol. 154-55, pp. 95-104, 2000.
31.Hiroyuki Kuriyama, Seiichi Kiyama, Shigeru Noguchi, Takashi Kuwahara, Satoshi Ishida, Tomoyuki Nohda, Keiichi Sano, Hiroshi Iwata, Hiroshi Kawata, Masato Osumi, Shinya Tsuda, Shoichi Nakano and Yukinori Kuwano,”Enlargement of Poly-Si Film Grain Size by Excimer Laser Annealing and Its Application to High-performance Poly-Si Thin Film Transistor,” Jpn. J. Appl. Phys. Vol. 30, pp. 3700-3703, 1991.
32.Toshio Kudo, Daiji Ichishima and Cheng-Guo Jin,”Simulation of Polycrystallines Silicon Growth by pulsed Excimer Laser Annealing,” Mat. Res. Soc. Symp. Vol. 617, pp. J1.6.1-J1.6.6, 2000.
33.M. Bauer,M. Oehme, M. Sauter, G. Eifler, E. Kasper,” Time resolved reflectivity measurements of silicon solid phase epitaxial regrowth,” Thin Solid Films,2001.
34.United States Patent,” Low temperature process for laser dehydrogenation and crystallization of amorphous silicon,” US5366926.
Available: http://www.freepatentsonline.com/5366926.html
35.G. AndraÈ, J. Bergmann, F. Falk,E. Ose ,”In-situ diagnostics for preparation of laser crystallized silicon films on glass for solar cells,” Thin Solid Films 337,1999.
36.S. R. Stiffler,Michael Thompson,P. S. Peercy,” Transient nucleation following pulsed-laser melting of thin silicon films,” Physical review B Vol. 43. No.12,1991.
37.F.C. Voogt, R. Ishihara,” A combined TEM and time-resolved optical reflectivity investigation into the excimer-laser crystallization of a-Si films,” Thin Solid Films 383, 2001.
38.丁勝懋,”雷射工程導論,”中央圖書出版社,2000.
39.J. Boneberg, J. Bischof, P. Leiderer,” Nanosecond time-resolved reflectivity determination of the melting of metals upon pulsed laser annealing,” Optics Communications 174,2000.
40.S.O. Kasap,” Optoelectronics and Photonics Principles and Practices,” Prentice Hall, 2001
41.R. Bilyalov, L. Stalmans, G. Beaucarne, R. Loo, M. Caymax, J. Poortmans, J. Nijs, “Porous silicon as an intermediate layer for thin- film solar cell,” Solar Energy Materials & Solar Cells, vol. 65, pp. 477-485, 2001.
42.Valery Yu Yerokhov, Ihor I. Melnyk,”Porous silicon in solar cell structures: a review of achievements and modern directions of further use,” Renewable and sustainable Energy Reviews, vol. 3, pp.291-322, 1999.
43.李世鴻,”半導體工程原理,” 權威圖書有限公司,2002.
44.S.M. Sze,” Semiconductor Devices Physics and Technology,” WILEY,2002.
45.林宸生,陳德請, ” 近代光電工程導論”, 全華科技圖書, 2001.

46.李俊賢,“CnInSe2:Sb薄膜太陽能電池之研究,” 國立中山大學材料科學研究所碩士論文, 高雄市, 2004.
47.J. Macneil, et al.,”Recent Improvements in Very Large Area α-Si PV Module Manufacturing,” in Proc., 10th Euro. Photovolt. Sol. Energy Conf.,1188,1991.
48.M. A. Green,”Silicon Solar Cells: Advanced Principles and Practice,” Bridge Printery, Sydney,1995.
49.M. S. Green,”Solar Cell”,in S. M. Sze, Ed.,Modern Semiconductor Device Physics, Wiley Interscience, New York,1998.
50.Valery Yu Yerokhov, Ihor I. Melnyk,“ Porous silicon in solar cell structures: a review of achievements and modern directions of further use,” Renewable and sustainable Energy Reviews, vol. 3, pp.291-322, 1999.
51.H. L. Hwang, Iian-Yang Lin, and C. Y. Sun,“ Research and Development of 32 High-Efficiency Space Silicon Solar Cells”, 2nd Conference on Space Technology Research, pp.337-341, 1994.
52.P. C. Mehta, V. V. Rampal,”Laser and Holography,” World Scientific, 1993.
53.楊慶忠,”光電工程,” 新文京開發出版股份有限公司,2004.
54.H. Nishihara, Masamitus Haruna and Toshiaki Suhara, “Optical Integrated Circuites”, McGraw-Hill Company, Inc., 2001.
55.Nishihara Hiroshi, HarunaMasamitsu, Suhara Toshiaki,“Optical integrated circuits,” New York:McGraw-Hill Book Co.,2001
56.Gang-Chih Lin, Likam Wang, C. C. Yang, M. C. Shih, and T. J. Chung,”Thermal Performance of Metal-Clad Fiber Bragg Grating Sensors,” IEEE Photonics Technology Letters, Vol. 10, No. 3, pp.406-408, 1998.
57.H. J. Eicher, P. Gunter and D. W. Pohl,”Laser-Induced Dynamics Gratings,” Springer-Verlag, 1986
58.K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson and J. Albert,”Bragg Gratings Fabricated in Monomode Photosensitive Optical Fiber by UV Exposure Though a Phase Mask,” Appl. Phys. Lett. 62(10), p1035,1993.
59.J. F. Rabek,”Photochemistry and Photophysics,” Boca Raton, vol 2. p119-141, 1990.
60.陳嘉倫,”以微機電系統技術製作繞射光柵模仁與柵輔式波導模仁,”國立虎尾科技大學光電與材料科技研究所碩士論文,雲林縣,2004.
61.P.Hariharan,”Optical Holography-Principles: Technique and Applications,” Cambridge University Press, Cambridge,1984.
62.Lorenz H., Despont M., Fahrni M., LaBianca N., Vettiger P., and Renaud P., “SU-8: a low-cost negative resist for MEMS,” J. Micromech. Microeng, pp.121-124, 1997.
63.Zhang J., Tan K. L., Hong G. D., Yang L. J., Gong H.,”Polymerization optimization of SU-8 photoresist and its applications in microfluidic systems and MEMS,” J. Micromech. Microeng. pp.20-26, 2001
64.Jae-Wook Kang, Jang-Joo Kim, Jinkyu Kim, Xiangdan Li, and Myong-Hoon Lee, “Low-loss and thermally stable TE-mode selective polymer waveguide using photosensitive fluoriatedpolyimide,” IEEE Photon. Technol., Vol. 14, pp. 1297-1299, 2002.
65.Younan Xia and George M. Whitesides; “Soft Lithography,” Angew. Chem. Int. Ed., 37, 550,1998.
66.Yueh-Lin Loo, Robert L. Willett, Kirk W. Baldwin, and John A. Rogers,”Additive, nanoscale patterning of metal films with a stamp and a surface chemistry mediated transfer process: Applications in plastic electronics,” Appl. Phys. Lett. Vol. 81, pp. 562-566, 2002.
67.D. B. Ostrowsky and A. Jacques,”Formation Of Optical Waveguides In Photoresist Films,” Appl. Phys. Lett. Vol. 18, pp. 556-561, 1971.
68.Neyer, T. Knoche, and L. Müller,”Fabrication of low loss polymer waveguides using injection moulding technology,” Electron Lett., Vol. 29, pp. 399-401, 1993.
69.Chang-Yen, D.A.; Eich, R.K.; Gale, B.K.,”A Monolithic PDMS Waveguide System Fabricated Using Soft-Lithography Techniques”, Lightwave Technology, Journal. Vol. 23, pp. 2088-2093, 2005.
70.LaBianca N., Gelorme J., Lee K., Sullican E., Shaw J.,”High aspect ratio optical resist chemistry for MEMS applications,” Proc. 4th Int. Symp. On Magnetic Materials, Processes, and Devices, The Electrochem. Soc., Vol. 18, pp. 368-396, 1995.
71.R. Hulstrom, R. Bird, C. Riordan,”Spectral Solar Irradiance Data Sets for Selected Terrestrial Conditions,” Solar Cell,15,365.1985.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 王振德(1997)。創造力三面模式評介---兼論創造力的本質與研究取向。資優教育季刊,64,1-5。
2. 王萍霜(2000)。淺談國民教育之課程統整。國教之友,51(4),49-53。
3. 許信雄(1998)。國小實施課程統整的走向。教育資料與研究,25,1-6。
4. 許信雄(1999)。課程統整的基本認識。教師天地,100,58-65。
5. 羅素貞(1996)。問題表徵與問題解決。屏東師院學報,9,149-176。
6. 薛梨真(2000)。國小教師統整課程實施成效之評估。課程與教學季刊,3( 1),39-58。
7. 薛梨真(1999)。從課程統整模式——談教學設計要領。班級經營,4(1),3-13。
8. 劉世南、郭誌光(2002)。創造力理論的發展:一個心理構念演進的省思。資優教育季刊,85,20-30。
9. 熊同鑫、王振興、陳淑麗(2001)。以國小高年級自然科為核心之課程統整設計研究。科學教育學刊,9(2),123-145。
10. 歐用生(1999)。從課程統整的概念評九年一貫課程。教育研究資訊,7(2),128-138。
11. 歐用生(1999)。從「課程統整」的概念評析九年一貫課程。教育研究資訊,7(1),22-32。
12. 楊坤原(2001)。創造力的意義及其影響因素簡介。科學教育月刊,239,3-12。
13. 詹秀美(1989)。問題解決能力的訓練與評量。資優教育,32,13-16。
14. 黃政傑(1991)。以科技整合促進課程統整。教師天地,52,38-43。
15. 黃茂在、陳文典(2004)。「問題解決」的能力。科學教育月刊,273,21-240。