跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/05 23:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:何信法
研究生(外文):Hsin Fa Ho
論文名稱:以電紡法製造奈米纖維及其應用
論文名稱(外文):Manufacture of Nanofiber by Electrospinning and Its Applications
指導教授:鍾慎修鍾慎修引用關係
指導教授(外文):Shen Shou Chung
學位類別:碩士
校院名稱:南台科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:117
中文關鍵詞:電紡奈米纖維空間電荷模擬導電性離子移動率
外文關鍵詞:electrospinningnanofiberspace chargesimulationconductivityion transport
相關次數:
  • 被引用被引用:5
  • 點閱點閱:493
  • 評分評分:
  • 下載下載:129
  • 收藏至我的研究室書目清單書目收藏:0
電紡是生產奈米纖維的重要技術,它利用高壓電場的力量將帶電荷的高分子溶液在靜電場中流動,然後經溶劑蒸發固化而得到纖維狀物質。奈米纖維是指直徑為奈米尺度(1~100nm)且長度較大的纖維材料,可採用物理方法開發具有奈米結晶尺度的聚酯纖維,使合成纖維具有天然纖維的特性,讓所生產的布料具有保型性及舒適感。但電紡最大的缺陷就是產出量極低,典型的單噴頭噴出量在ml/h的範圍,解決方法在於大量噴頭的平面或線性組合。但在大量的噴嘴裝置中,電場的互相干擾使得噴出的結果尚未能充分理想化,因此電腦模擬是有其必要的。
本論文共進行三項研究:一、以粒子在模擬格的技術來模擬電紡過程中空間電場的分布。二、應用電紡技術製備PVA溶液纖維,觀察在不同噴射距離、電壓及PVA濃度下所形成的纖維結構。三、將PVA纖維薄膜置入水槽中進行大氣壓下鹽離子的滲透實驗,觀察不同濃度鹽的導電性及離子移動率,與濾紙做對照比較。
以粒子在模擬格的技術來模擬在軸向、角向電場及其作用力的空間電場分布,來探討如何控制纖維所帶電荷及噴出前後的電場分布,發現軸向電場不一定指向收集板,而複雜的電場交互作用則是造成實驗中鞭態不穩定的主因。
使用PVA溶液在5~15KV的電壓下於30分鐘的時間內形成數cm2的奈米纖維薄膜,隨著電壓及噴射距離的增加,厚度會變得越來越薄,直徑會變得越來越小。但隨著PVA濃度的增加,厚度會逐漸變薄,直徑則會逐漸增大。由本實驗結果發現,改變電壓與距離其意義是不一樣的。距離加長使得表面電荷作用的時間加長,使纖維拉得更細。反過來在薄膜厚度的影響上,因為高電壓賦予纖維較大的動能,使得薄膜擴散得較快,最薄的薄膜厚度只有20μm左右,這在其他方法很難達到。
我們以奈米纖維薄膜與微米濾紙作比較,以鹽為主要溶質,發現在低離子濃度時,奈米纖維與微米濾紙的滲透率相近,而高離子濃度時,奈米纖維薄膜對離子的阻攔力較強,推測原因為奈米纖維的表面積大,凡德瓦力強,累積的表面離子多,牽制了離子的移動。
在未來的研究上,假如能在奈米纖維加上奈米顆粒,則可利用物理性質擴展其功能和用途。
Electrospinning is an important technique for producing nanofibers, it makes a polymer solution flowing in the static electric field by using the high pressure electric field, then gets fibers by the dissolvent evaporating and solid. Nanofiber is a kind of fibers about the diameter in the nanometer range(1~100nm), and length longer, it can use physical theory to develop the polyester of the nano crystalline dimensions, and makes the synthetic fibers have the characteristic of natural fiber, to make the cloth produced has shape retention and comfort. But the drawback of electrospinning is very low throughput, typical spun volume is in ml/h range. The solution to the issue lies in massive combinations of spinneret in linear or planar arrangement. But the interference of the electric field from multiple spinnerets and the force distribution less than satisfactory, so fiber motion from single spinneret needs to be simulated first.
The thesis has three studies:(1)We present a Particle-In-Cell code simulation on the space charge field distribution during electrospinning. (2)Manufacture of PVA nanofiber by electrospinning, observe the fiber structure become under the different jet distance, voltage and PVA concentration. (3) PVA nanofiber thin were placed in the sink to carry on the atmosphere presses, the salt ion transport experiment, observe the electrical conductivity and the ion flow rate of different concentrate salt, we also perform ion transport experiment with nanofiber and filter paper.
We present a Particle-In-Cell code simulation on the space charge field distribution during electrospinning. Nanofiber position, axial electric field, rho-direction electric field. The critical technique lies in controlling the space charge that nanofibers carry and the space charge field distribution during electrospinning, we found that the axial field is not always pointing towards the collector screen, and the complex field distribution is the cause of whipping instability evident in many experimental reports.
We make nanofibers of several cm2 area under 5-15KV voltage within 30 minutes, and when the increment of the voltage and jet distance, the thickness will become thinner and thinner, the diameter will become smaller and smaller. But when the increment of the PVA concentration, the thickness will become gradually thin, the diameter will enlarge gradually. In the experimental result, we found changing distance and voltage brings different results. The distance lengthens to make surface electric charge time of the function. As for the influence of the thin film thickness, because the high voltage gives the fiber the greater kinetic energy, making the thin film spreads more and fast, the thinnest film achieved is 20μm thick, this can hardly reach in other methods.
We also perform ion transport experiment with nanofiber and ordinary filter paper, salt is the mainly solute, we found similar transport property at low ion concentration, but much stronger ion stopping power for nanofiber at high ion concentration, this might be due to the larger surface area effect.
In future research, if can disperse nanoparticles on the nanofiber, it will use the physical theory to expand its function and use.
中文摘要------------------------------------------------------------iv
英文摘要-------------------------------------------------------------v
誌謝---------------------------------------------------------------vii
目錄--------------------------------------------------------------viii
表目錄---------------------------------------------------------------x
圖目錄--------------------------------------------------------------xi
第一章 序論-----------------------------------------------------------1
1-1 前言-------------------------------------------------------------1
1-2 研究動機與目的----------------------------------------------------3
1-2-1 研究動機-------------------------------------------------------3
1-2-2 研究目的-------------------------------------------------------5
第二章 文獻探討-------------------------------------------------------5
2-1 電紡的基本概念----------------------------------------------------5
2-2 電紡機介紹--------------------------------------------------------7
2-2-1 平行板垂直排布的電紡機-------------------------------------------7
2-2-2 噴頭與收集板水平排布的電紡機--------------------------------------8
2-2-3 電紡機的新發展--------------------------------------------------9
2-3 電紡的理論分析----------------------------------------------------9
2-3-1 電紡的不穩定性射流----------------------------------------------12
2-4 影響電紡結構的因素------------------------------------------------13
第三章 電紡纖維在空間電場的模擬----------------------------------------20
3-1 模擬軟體簡介-----------------------------------------------------20
3-2 模擬結果--------------------------------------------------------23
3-2-1 單噴頭的靜電場分布----------------------------------------------24
3-2-2 三種噴頭形狀對軌跡的影響----------------------------------------26
3-2-3 溶液初速對軌跡的影響--------------------------------------------28
3-2-4 所加電場強度對奈米軌跡的影響-------------------------------------35
3-2-5 障壁板電壓對軌跡的影響------------------------------------------37
3-2-6 ESSC對軌跡的影響-----------------------------------------------39
3-2-7 空間電場隨時間變化圖--------------------------------------------40
3-2-8 多噴頭的模擬---------------------------------------------------48
第四章 實驗方法與流程-------------------------------------------------60
4-1 電紡製作之奈米纖維薄膜研究-----------------------------------------62
4-1-1 施加不同電壓對纖維結構的影響-------------------------------------62
4-1-2 改變不同距離對纖維結構的影響-------------------------------------63
4-1-3 調配不同PVA濃度對纖維結構的影響----------------------------------64
4-2 以SEM觀察電紡製成的PVA纖維膜加上四氧化三鐵後的結構-------------------66
4-3 PVA與CNT混合後的纖維結構------------------------------------------69
4-4 以電紡法製造之PVA奈米纖維薄膜之離子移動率---------------------------72
4-5 探討多重收集器形狀對於電紡之影響與特性分析---------------------------75
4-6 以電紡法中不同噴頭尺寸製作之奈米纖維之特性分析-----------------------86
4-7 磁性收集盤與兩金屬線收集器對纖維結構的影響---------------------------96
4-7-1 磁性收集盤之纖維結構--------------------------------------------96
4-7-2 兩金屬線收集器之纖維結構----------------------------------------98
4-8 不同直徑的奈米纖維薄膜對海水淡化的效應-----------------------------105
第五章 總結論-------------------------------------------------------111
參考文獻-----------------------------------------------------------113自述---------------------------------------------------------------116
[1] 南台科技大學機械工程系
http://elearning.stut.edu.tw/m_facture/Nanotech/Web/ch6.htm
[2] 經濟部技術處, “奈米科技市場與發展概況” , p.2 (1992)
[3] 陳貴賢, “奈米科技與生活” , 科學發展月刊, 二月(2006)
[4] 林金雀, “奈米科技市場與發展概況” , 工研院IEK化材組, P2 (1992)
[5] 葉安義, “奈米科技與食品” , 科技發展月刊, 十二月(2004)
[6] 呂世源, “奈米新世界” , 科學發展月刊, 十一月(2002)
[7] 錢人元, “材料科學與工程” , 湖南科技出版社(1985)
[8] 張立德, 牟季美, “奈米材料和奈米結構” , 科學出版社(2001)
[9] 吳大誠、杜仲良、高緒珊, “奈米纖維” , 化學工業出版社(2004)
[10] 紡拓會, “奈米紡織品之應用” , 產經資訊處(2006)
[11] 王世敏、許祖勛、傅晶, “奈米材料原理與製備” , 五南出版社(2004)
[12] J. Zeleny, “The Electrical Discharge from Liquid Points, and a Hydrostatic Method of Measuring the Electric Intensity at Their Surface”, Physical Review, Vol. 3, p.69-91 (1914)
[13] Formhals, A., US Patent, 1975504 (1934)
[14] Formhals, A., US Patent, 2160962 (1939)
[15] Formhals, A., US Patent, 2187306 (1940)
[16] Y. M. Shin, M. M. Hohman, M. P. Brenner and G. C. Rutledge, “Electrospinning: A whipping fluid jet leads to submicron fibers”, Applied Physics Letters, February (2001)
[17] J. Doshi and D.H. Reneker, “Electrospinning process and applications of electrospun fibers”, J. Electrostatics, 35(2-3), 151 (1995)
[18] X. Fang and D. H. Reneker, J. Macromol. Sci-Phys., B36 (2), 169 (1997)
[19] J.S. Kim and D. H. Reneker, Polymer Eng. & Sci., May, 39(5), 849 (1999)
[20] E. Zussman, A. Theron, and A. L. Yarin, “Electrostatic field-assisted building 3-D nano-structures from electrospun nanofibers”, Applied Physics Letters, Vol. 82, No. 6 (2003)
[21] J. Kameoka and H. G. Craighead, “Fabrication of Oriented Polymeric Nanofibers on Planar Surfaces by Electrospinning”, Applied Physics Letters, Vol. 83, No. 2 (2003)
[22] Kessick. Royal and Gary Tepper, “Microscale electrospinning of polymer nanofiber interconnections”, Applied Physics Letters, Vol. 83, No.3 (2003)
[23] C. Kim and K. S. Yang, Applied Physics Letters, Vol. 83, No. 6 (2003)
[24] N. J. Pinto, A. T. Johnson, Jr., A. G. MacDiarmid, C. H. Muller, N. Theofylaktos, D. C. Robinson, and F. A.Miranda, “Electrospun polyaniline/poly-ethylene oxide nanofiber field-effect transistor”, Applied Physics Letters, Vol. 83, No. 20 (2003)
[25] D. Li, T. Herricks, and Y. Xia, “Magnetic nanofibers of nickel ferrite prepared by electrospinning”, Applied Physics Letters, Vol. 83, No. 22 (2003)
[26] D. Czaplewski, J. Kameoka, R. Mathers, G. W. Coated, and H. G. Craighead, “Nonlithographic Approach to Nanostructure Fabrication Using a Scanned Electrospinning Source”, Applied Physics Letters, Vol. 83, No. 23 (2003)
[27] H. Ye, H. Lam, N. Titchenal, Y. Gogotsi, F. Jo, “Reinforcement and rupture behavior of carbon nanotubes–polymer Nanofibers”, Applied Physics Letters, Vol. 85, No. 10 (2004)
[28] X. M. Sui, C. L. Shao, and Y. C. Liu, Appl. Phys. Lett., Vol. 85, No. 10 (2004)
[29] B. Goplen, L. Ludeking, D. Smith and G. Warren, “User-configurable MAGIC for electromagnetic PIC calculations”, Computer Physics Communication, Vol. 87, p.54-86 (1995)
[30] D. Fang, B. S. Hsiao and B. Chu, “Multiple-jet Electrospinning of Non-woven Nanofiber Articles”, Polymer Preprint, 44(2), 59 (2003)
[31] D. H. Reneker and I. Chun, “Nanometre diameter fibres of polymer produced by electrospinning”, Nanotechnology, Vol. 7, p. 216 (1996)
[32] I. Chun, D. H. Reneker, H. Fong, X. Famg, J. Deitzel, N. B. Tan and K. Kearns, “Carbon nanofibers from polyacrylonitrile and mesophase pitch,” J. Adv. Mater., Vol. 31, p. 36–41 (1996)
[33] A. Theron, E. Zussman and A.L. Yarin, “Electrostatic field-assisted alignment of electrospun nanofibers”, Nanotechnology, Vol. 12, p. 384 (2001)
[34] H. Fong, C. S. Wang and R. A. Vaia, “Generation of Electrospun Fibers of Nylon 6 and Nylon 6-Montmorillonite Nanocomposite”, Polymer, Vol. 43, p. 775-780 (2002)
[35] P. Viswanathamurthi, N. Bhattarai, H. Y. Kim, D. R. Lee, S. R. Kim and M. A. Morris, “Preparation and morphology of niobium oxide fibres by electrospinning”, Chemical Physics Letters, Vol. 374, p. 79 (2003)
[36] F. Ko, Y. Gogotsi, A. Ali, N. Naguib, H. Ye, G. Yang, C. Li and P. Willis, “Electro-spinning of Continuous Carbon Nano-tube filled Nanofiber Yarns”, Advanced Materials Vol. 15 p. 1164 (2003)
[37] M. Y. Song, D. K. Kim, K. J. Ihn, S. M. Jo, D. Y. Kim, “New application of electrospun TiO2 solid-state dye-sensitized solar electrode to cells”, Nanotechnology Vol. 15, p. 1861. (2003)
[38] R. Gopal, S. Kaur, C. Y. Feng, C. Chan, S. Ramakrishna, S. Tabe and T. Matsuura, “Electrospun nanofibrous polysulfone membranes as pre-filters: Particulate removal”, Journal of Membrane Science, Vol. 289, p. 210 (2007)
[39] E. Mitsoulis and M. Beaulne, “Numerical Simulation of Rheological Effects in Fiber Spinning”, Adv. Polym. Technol., Vol, 19, p. 155-172 (2000)
[40] 洪崇豪,“以電紡絲製備彈性奈米SBS 纖維膜”, 成功大學, 碩士論文 (2004)
[41] 黃怡慧, “以電紡絲製備聚羥基丁酸酯纖維”, 成功大學, 碩士論文 (2005)
[42] 林坤賢, “以電紡絲製備聚苯噁唑纖維”, 成功大學, 碩士論文 (2005)
[43] 林健樺, “以電紡絲製備聚苯乙烯纖維膜” , 成功大學, 碩士論文 (2004)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top