跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/27 03:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:曾冠瑄
研究生(外文):Kuan-Hsuan Tseng
論文名稱:以SOPC為基礎兩足步行機器人運動控制系統之研製
論文名稱(外文):Design and Implementation of a Biped Walking Robot Motion Control System Based on SOPC Technology
指導教授:龔應時龔應時引用關係
指導教授(外文):Ying-Shieh Kung
學位類別:碩士
校院名稱:南台科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:117
中文關鍵詞:兩足步行機器人伺服馬達
外文關鍵詞:FPGASOPC
相關次數:
  • 被引用被引用:2
  • 點閱點閱:270
  • 評分評分:
  • 下載下載:65
  • 收藏至我的研究室書目清單書目收藏:0
  本論文主要目的在發展兩足步行機器人之伺服運動控制器。首先針對機器人微小馬達驅動系統控制技術研究,並以機器人軸關節為平台來建構驅動器系統以研究其控制性能。軸關節致動器採用PD控制器以控制馬達位置,而以RS-232作為通訊傳輸。ATMEL半導體公司生產的AVR單晶微控制器將用來發展軸關節致動器系統。
  本論文另一個研究的重點在於控制兩足步行機器人之步行運動,主要將推導兩足步行機器人之反向運動學並實現之。首先以D-H(Denavit-Hartenberg)座標系統定義兩足步行機器人之座標連桿系統,以轉移矩陣法得到順向運動學公式,接著推導機器人之反向運動學公式。本文所提之兩足步行機器人之中央控制器系統採用FPGA(Field Programmable Gate Array)晶片及嵌入一顆NiosII處理器,而兩足步行機器人移動所需之運動命令反向運動學計算及與機器人軸關節致動器之通訊等功能將在NiosII處理器實現。最後,本論文將以AI-Robot為應用平台,來證實所提兩足步行機器人伺服運動控制器之可行性。
  The main purpose of this thesis is to develop a servo motion controller for biped walking robot. First, the controller of the motor drive system is studied, and the motor using in the joint axle of AI-robot is adopted as a platform to evaluate the controller performance. The PD controller is designed as the position controller of the motor drive and the RS232 is adopted as the communication interface with external devices. Then, an AVR single chip controller produced by ATMEL Semiconductor Corporation is used to develop the position controller of the intelligent actuator in AI-robot.
  The other key research of the thesis is to develop the central controller which is used in the pace motion of the biped walking robot. First, the forward and inverse kinematics, which is described by D-H (Denavit-Hartenberg)coordinated system, of the biped walking robot is derived. Then an FPGA (Field Programmable Gate Array)embedded a Nios II processor is adopted to implement the inverse kinematics and the pace motion of the biped walking robot. Finally, an AI-Robot used in this thesis will be used as the application platform to verify the feasibility of the proposed motion control technology for the biped walking robot.
中文摘要……………………………………………………………………………i
英文摘要……………………………………………………………………………ii
致謝…………………………………………………………………………………iii
目次…………………………………………………………………………………iv
表目錄………………………………………………………………………………viii
圗目錄………………………………………………………………………………ix
第一章 緒論………………………………………………………………………1
1.1 前言………………………………………………………………………1
1.2 文獻回顧…………………………………………………………………2
1.3 研究目的…………………………………………………………………4
1.4 論文架構…………………………………………………………………5
第二章 二足機器人機械結構之描述……………………………………………7
2.1 前言………………………………………………………………………7
2.2 AI伺服馬達機構元件描述……………………………………………7
2.2.1 機構元件說明…………………………………………………………7
2.2.2 AI伺服馬達機構原件描述………………………………………8
2.2.3 AI伺服馬達硬體架構……………………………………………10
2.2.4 AI伺服馬達機構驅動能力………………………………………11
2.3 兩足機器人機械結構之描述…………………………………………12
2.3.1 機構之定義與分析………………………………………………12
2.3.2 整體機構外觀之描述……………………………………………14
2.3.3 兩足機器人控制器系統硬體架構………………………………16
第三章 兩足機器人伺服馬達控制器之研究……………………………………18
3.1 前言……………………………………………………………………18
3.2 軸關節致動器…………………………………………………………18
3.3 直流馬達數學模式……………………………………………………19
3.4 AI伺服馬達微控制器介紹……………………………………………23
3.5 AI伺服馬達位置控制系統……………………………………………25
3.6 AVR單晶微控制器的硬體架構………………………………………29
3.7 AVR單晶微控制器之發展環境………………………………………31
第四章 ALTERA SOPC與FPGA介紹…………………………………………………33
4.1 前言……………………………………………………………………33
4.2 ALTERA SOPC介紹……………………………………………………33
4.3 ALTERA SOPC之應用…………………………………………………41
4.4 ALTERA StratixII EP2S60F672C5ES簡介……………………………43
4.5 ALTERA StratixII EP2S60F672C5ES發展板…………………………46
4.6 NiosII中RS-232之應用…………………………………………………50
4.7 NiosII微處理器程式設計………………………………………………52
第五章 兩足機器人模型之運動學研究………………………………………54
5.1 前言………………………………………………………………………54
5.2 兩足機器人之運動學…………………………………………………54
5.3 座標系統…………………………………………………………………55
5.3.1 位置與方向……………………………………………………55
5.3.2 相對座標系統…………………………………………………55
5.3.3 旋轉座標系統…………………………………………………56
5.3.4 齊次座標………………………………………………………57
5.3.5 座標架構………………………………………………………58
5.3.6 旋轉關節座標架構……………………………………………60
5.4 兩足機器人正向運動學……………………………………………62
5.5 兩足機器人反向運動學………………………………………………76
5.6 兩足機器人之運動與反運動方程式模擬驗證………………………81
5.6.1 以MATLAB模擬驗證運動方程式推導之正確性………………81
5.6.2 以MATLAB模擬驗證反運動方程式推導之正確性…………84
5.7 步態規劃與步行軌跡…………………………………………………88
第六章 實驗架構與結果…………………………………………………………89
6.1 前言………………………………………………………………………89
6.2 實驗架構與硬體設備……………………………………………………89
6.3 單顆AI伺服馬達之動態響應…………………………………………91
6.3.1 PWM輸出訊號測試……………………………………………91
6.3.2 步級響應測試………………………………………………94
6.3.3 AI伺服馬達動態性能響應分析……………………………96
6.4 步行模擬與實驗………………………………………………………101
第七章 結論與未來展望……………………………………………………107
7.1 結論………………………………………………………………………107
7.2 未來展望…………………………………………………………………108
參考文獻……………………………………………………………………………110
作者簡介……………………………………………………………………………116
【機器人控制】
[1]林文源, 機器人的進化-人工智慧與機器人學的新世紀, 商周出版, 2002.
[2]L. W. Tsai, Robot Analysis-The Mechanics of Serial and Parallel Manipulators, John Wiley & Sons, Inc, 1999.
[3]H. B. Kazemian, “The SOF-PID controller for the control of a MIMO robot arm ,” IEEE Trans. on Fuzzy Systems., Vol. 10, pp.523-532, Aug. 2002
[4]F. L. Lewis, C.T. Abdallah and D.M. Dawson, Control of Robot Manipulators, Macmillan Publishing Company, 1993.
[5]R. Siegwart and I. R. Nourbakhsh, Introduction to Autonomous Mobile Robots, MIT Press.
[6]T. Asfour , R. Dillmann, “ Human-like motion of a humanoid robot arm based on a closed-form solution of the inverse kinematics problem,” in Conf. IEEE/RSJ ICRA’03 Int., Vol. 2, pp. 1407-1412.
[7]D. Radhakrishnan, I.R. Nourbakhsh, “Topological robot localization by training a vision-based transition detector,” Proceedings. of the 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '99), Vol.1 , pp.468 -473.

[8]K. Takaoka, K. Yokoyama, et al. “Development of the fully-automatic live-line maintenance robot-Phase III,” Proceedings of the IEEE International Symposium on Assembly and Task Planning, May 2001, pp.423–428.
[9]A. Bruce, J. Knight, S. Listopad, B. Magerko, I.R. Nourbakhsh, “Robot improve: using drama to create believable agents,” Proceedings. of the IEEE International Conference on Robotics and Automation (ICRA '00), Vol.4 , pp.4002 -4008, 2000.
[10]H. M. Gross, A. Koenig, C. Schroeter, H.J. Bochme, , “Omnivision-based probabilistic self-localization for a mobile shopping assistant continued,” Proceedings of 2003 IEEE/RSJ International Conference on Intelligent Robots and System, Vol.2, pp.1505-1511.
[11]J. E. Clark, J.G.. Cham, et al. “Biomimetic design and fabrication of a hexapedal running robot,” Proceedings of the 2001 IEEE International Conference on Robotics and Automation, Vol. 4, Seoul Korea, May 2001, pp.3643 -3649.
[12]Y. Sakagami, et al. “The intelligent ASIMO: system overview and integration,”, IEEE/RSJ International Conference on Intelligent Robots and System, Vol. 3 , Sept. pp.2478-2483, 2002.
[13]M. Fujita, etc. al. “A small humanoid robot SDR-4X for entertainment applications,” Proceedings of 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Vol. 2 , July 2003, pp.938-943.
[14]F. Kanehiro, et al., “The first humanoid robot that has the same size as a human and that can lie down and get up,” Proceedings. of ICRA '03. IEEE International Conference on Robotics and Automation, Vol.2, Sept. pp.1633-1639, 2003.

[15]G.S. Hornby, et al., “Evolving robust gaits with AIBO,” Proceedings of the IEEE International Conference on Robotics and Automation, ICRA '00, Vol. 3 , pp.3040-3045, 2000.
[16]H. L. Sng, G.. Sen, C.H. Messom, “Strategy for collaboration in robot soccer,” Proceedings of The First IEEE International Workshop on Electronic Design, Test and Applications, pp.347-351, 2002.
[17]T-H. S. Li, I.F. Lin, T.M. Hung, “Behavior-based fuzzy logic control for a one-on-one robot soccer competition,” Proceedings of the 2002 IEEE International Conference on Fuzzy Systems, FUZZ-IEEE'02., Vol.1 , pp.470-475, 2002.
[18]I. Kato, H. Tsuiki, “The hydraulically powerwd biped walking machine with a high carrying capacity”, Fourth Symposium on External Extremities. Dubrovnik: Yugoslav Committee for Electronics and Automation.
[19]C. Meifen, A. Kawamura, “An Evolutionary Design Scheme of Neural Oscillatory Network for Generation of Biped Walking Patterns”, 1998 5th International Workshop on Advanced Motion Control, pp. 666-671, 1998.
[20]C. Meifen, A. Kawamura, “Generation of Humanoid Biped Walking Patern Using Neural Oscillatory Network”, IEEE/ASME International Conference on advanced Intelligent Mechatronics,97, pp.81, 1997.
[21]紀捷聰, 二足步行機器人的設計與控制, 國立台灣科技大學 電機工程系博士論文, 2001.
[22]K. Loffler, M. Gienger, F. Pfeiffer and H. Ulbrich, “Sensor and Control Concept of a Biped Robot,” IEEE Trans. on Indus. Electron., vol.51, no.5, pp. 972-980, 2004.

[23]B.W. Bomar, “Implementation of Microprogrammed control in FPGAs,” IEEE Trans. on Indust. Electr., vol. 49, no. 2, pp. 415-422, 2002.
[24]S.N. Oh, K.I. Kim and S. Lim, “Motion Control of Biped Robots Using a Single-Chip Drive,” Proceeding of the 2003 International Conference on Robotics & Automation, pp. 2461~2465.
[25]M. Raibert, “Legged robots that balance”, MIT Press, Cambridge, MA., 1986.
[26]J. Furusho, S. Akihito, S. Masamichi and K. Eichi, “Realization of Bounce Gait in a Quadruped Robot with Articular-Joint-type legs”, Proceedings of the IEEE International Conference on Robotics and Automation, pp.697-702, 1995.
[27]C.L. golliday, Jr and H. Hemani. “An Approach Analyzing Biped Locomotion Dynamics and Designing Robot Locomotion Control”, IEEE Transactions On Automation Control, Vol.22, No.6, pp.963-972, 1977.
[28]F. Miyazaki, and S. Arimotr, “A Control Theoretic study on Dynamical Biped Locomotion”, ASME. Journal of Dynamical Systems, Measurement and Control, Vol.102, pp.233-239, 1980.
[29]H. Miura, and I. Shimoyama, “Dynamical Walk of Biped Locomotion”, International Journal Robotics Research, Vol.3, No.1, pp.60-74, 1984.
【AI-Motor規格】
[30]Manual of Megarobotics Ltd. – AI-Motor – 701.
[31]Manual of Megarobotics Ltd. – AI-Motor – 1001.

【馬達控制】
[32]陳建武, 永磁式同步馬達伺服控制晶片之研製, 南台科技大學 電機工程系研究所碩士論文, 91.
【AVR-Control】
[33]Data sheet of Atmel Ltd. – AVR Atmega8.
[34]Data sheet of Allegro Ltd. – A3966.
[35]Data sheet of Alps Ltd.- RDC50.
[36]Data sheet of Nation Semiconductor Ltd. – LP2985.
[37]陳漢宗, 石博元, AVR單晶微控制器-使用C語言, 松崗書局, 2005.
[38]http://www.ipass.net/hammill/newavr.htm
【SOPC & FPGA】
[39]Web-site: www.altera.com
[40]蕭如宣, SOPC系統設計, 2003, 儒林書局.
[41]Altera, Nios Development Kit, Stratix Edition – Getting Started user Guide, 2003.
[42]Altera, Advanced System Design, 2004.
[43]Altera, Quartus II Design Software for PCs, 2003.
【Denavit-Hartenberg】
[44]許哲誌, 關節型機械臂系統整合晶片之研製, 南台科技大學 電機工程系, 研究所碩士論文, 2005.
[45]謝志昇, 小型二足步行機器人製作與控制, 國立台灣科技大學電機工程系研究所, 碩士論文, 2005.
[46]余佳擁, 二足步行機器人的設計製作與軌跡規劃, 大同大學機械工程系研究所, 碩士論文, 2004.
[47]R. J. Schilling, Fundamentals of robotics: analysis and control, Prentice-Hall, Inc., 1990.
[48]J. Denavit, and R. S. Hartenberg, “A Kinematics Notation for Lower Pair Mechanisms Based on Matrices,” ASME., J. of Applied mechanics, 1995.
[49]陳澄峰, 二足機器人行走模式之研究, 大葉大學機械工程系研究所固力組, 碩士論文, 2002.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top