# 臺灣博碩士論文加值系統

(3.236.110.106) 您好！臺灣時間：2021/07/25 07:14

:::

### 詳目顯示

:

• 被引用:0
• 點閱:76
• 評分:
• 下載:10
• 書目收藏:0
 在此論文中，我們提出以Lyapunov穩定性定理的方法作為基礎並且對於當離散時間和連續時間T-S糢糊切換系統存在狀態變數切換法則時，使其穩定化和設計切換法則的研究。然而，我們所提出的這些方法對於當所有的個別子系統均為不穩定狀態之下，仍然可以達到我們期望的控制目標。而PDC的方法是經由T-S模糊模型的設計使用於模糊控制器上，穩定化的問題被縮減成為一個必須對於一群線性矩陣不等式中找到存在其中的共同Lyapunov函數的問題。並且，與LMIs有關的凸面最佳化技術(Convex optimization techniques)被利用於找出一個共同Lyapunov函數和穩定回授增益並滿足T-S模糊切換連續/離散系統。最後，探討一些例子加以說明所提出方法實現之可行性。
 In this thesis, the methods based on Lyapunov stability theorem to study the stabilization and switching law design for the T-S fuzzy switched continuous-time and discrete-time systems with state-driven switching method are presented. Furthermore, these methods can be applied to cases when all individual subsystems are unstable. The PDC is employed to design fuzzy controllers from the T-S fuzzy models. The stabilization analysis is reduced to a problem of finding a common Lyapunov function for a set of linear matrix inequalities. Therefore, convex optimization techniques involving LMIs are utilized to find a common Lyapunov function and stable feedback gains satisfying T-S fuzzy switched continuous/discrete system.Finally, some numerical examples and an application to a chemical process example will be given to show the merits of the proposed approach, respectively.
 Chapter 1. Introduction 11.1 Background 11.2 Research Motivation 41.3 Organization of Thesis 5Chapter 2. Switched System and T-S Fuzzy Model 62.1 Switched System 62.1.1 System Statement 62.1.2 Stability of Switched System 72.2 T-S Fuzzy Model 92.2.1 The Model of T-S Fuzzy Continuous-time system 92.2.2 Stability Analysis for T-S Fuzzy Continuous-time System 102.2.3 Parallel Distributed Compensation for T-S Fuzzy Continuous-time System 112.2.4 The Model of T-S Fuzzy Discrete-time System 132.2.5 Stability Analysis for T-S Fuzzy Discrete-time System 142.2.6 Parallel Distributed Compensation for T-S Fuzzy Discrete-time System 15Chapter 3. Stability Analysis and Design of T-S Fuzzy Switched System 173.1 Introduction 173.2 Stability Analysis of T-S Fuzzy Switched Continuous-time System 183.2.1 System Description and Problem Statement 183.2.2 Stability Condition for T-S Fuzzy Switched Continuous-time System with Two Individual System 193.2.3 Stability Condition for T-S Fuzzy Switched Continuous-time System with Multiple Individual System 243.2.4 Example for T-S Fuzzy Switched Continuous-time System 283.3 Stability Analysis of T-S Fuzzy Switched Discrete-time System 343.3.1 System Description and Problem Statement 343.3.2 Stability Condition for T-S Fuzzy Switched Discrete-time System with Two Individual System 383.3.3 Stability Condition for T-S Fuzzy Switched Discrete-time System with Multiple Individual System 433.3.4 Example for T-S Fuzzy Switched Discrete-time System 47Chapter 4. Stabilization of T-S Fuzzy Switched System 534.1 Stabilization of T-S Fuzzy Switched Continuous-time System 534.1.1 Stabilization for T-S Fuzzy Switched Continuous-time System with Two Individual System 534.1.2 Stabilization for T-S Fuzzy Switched Continuous-time System with Multiple Individual System 604.1.3 Example for T-S Fuzzy Switched Continuous-time System 644.2 Stabilization of T-S Fuzzy Switched Discrete-time System 744.2.1 Stabilization for T-S Fuzzy Switched Discrete-time System with Two Individual System 744.2.2 Stabilization for T-S Fuzzy Switched Discrete-time System with Multiple Individual System 824.2.3 Example for T-S Fuzzy Switched Discrete-time System 86Chapter 5. Conclusion and Future Research 925.1 Conclusion 925.2 Future Research 93Reference
 [1] D. Liberzon and A. S. Morse, “Basic problems in stability and design of switched systems”, IEEE Control Systems Magazine, 19, pp. 59-70, 1999.[2] A. S Morse, “Supervisory control of families of linear set-point controllers-part 1: exact matching”, IEEE Transactions on Automatic Control, vol. 41, no. 10, pp. 1413-1431, 1996.[3] M. W. Hofbaur and B. C. Williams, “Hybrid estimation of complex systems,” IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics, vol. 34, No. 5, pp. 2178-2191, 2004.[4] A. A. Agrachev and D. Liberzon, “Lie-algebraic stability criteria for switched systems”, SIAM J. Control Opt., vol. 41, no. 1, pp. 253-269, 2001.[5] D. Cheng, L. Guo and J. Huan, “On quadratic Lyapunov functions”, IEEE Transactions on Automatic Control, vol. 48, no. 5, pp. 885-890, 2003.[6] W. P. Dayawansa and C. F. Martin, “A converse Lyapunov theorem for a class of dynamical systems which undergo switching,” IEEE Transactions on Automatic Control, vol. 44, no. 4, pp. 751-760, 1999.[7] Z. G. Li, C. Y. Wen and Y. C. Soh, “Stabilization of a class of switched systems via designing switching laws”, IEEE Transactions on Automatic Control, vol. 46, no. 4, pp. 665-670, 2001.[8] Z. Sun and S. S. Ge, “Analysis and synthesis of switched linear control systems”, Automatica, vol. 41, pp. 181-195, 2005.[9] E. Skafidas, R. J. Evans, A. V. Savkin and I. R. Petersen, “Stability results for switched controller systems”, Automatica, vol. 35, pp. 553-556, 1999.[10] J. P. Hespanha and A. S. Morse, “Stability of switched systems with average dwell-time”, in Proc. IEEE Conf. Decision and Control, pp. 2655-2660, 1999.[11] G. Zhai, B.Hu, K. Yasuda and A. N. Michel, “Stability analysis of switched systems with stable and unstable subsystems: an average dwell time approach”, Int. J. Systems Science, vol. 32, pp. 1055-1061, 2001.[12] B. Lu and F. Wu, “Switching LPV control design using multiple parameter-dependent Lyapunov functions”, Automatica, vol. 40, pp. 1973-1980, 2004.[13] S. H. Lee, T. H. Kim and J. T. Lim, “A new stability analysis of switched systems”, Automatica, vol. 36, pp. 917-922, 2000.[14] J.-S. Chiou, “Stability Analysis for a Class of Switched Large-scale Time-delay Systems via Time-switched Method ,“IEE Proc.-Control Theory Appl., vol. 153, pp. 684-688, 2006.[15] K. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications to modeling and control,” IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics, vol. 15, No. 1, pp. 116-132, 1985.[16] W.-W. Lin, W.-J. Wang and S.-H. Yang, “A noval stabilization criterion for large-scale T-S fuzzy system,” IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics, Accepted for future publication, 2007.[17] W.-J. Wang, Y.-J. Chen and C.-H. Sun, “Relaxed stabilization criteria for discrete-time T-S fuzzy control systems based on a switching fuzzy model and piecewise Lyapunov function,” IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics, vol. 37, No. 3, pp. 551-559, 2007.[18] H.-N. Wu, “Delay-dependent stability analysis and stabilization for discrete-time fuzzy systems with state delay: a fuzzy Lyapunov-Krasovskii functional approach,” IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics, vol. 36, No. 4, pp. 954-962, 2006.[19] T.-H. S Li and K.-J. Lin, “Stabilization of singularly perturbed fuzzy systems,” IEEE Transactions on Fuzzy Systems, vol. 12, no. 5, pp. 579-595, 2004.[20] A. H. Sonbol and M. S. Fadali, “TSK fuzzy systems types II and III stability analysis: continuous case,” IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics, vol. 36, No. 1, pp. 2-12, 2006.[21] T. Chai, D. Yang and H. Zhang, “Guaranteed cost networked control for T-S fuzzy systems with time delays,” IEEE Transactions on Systems, Man, and Cybernetics-Part C:Applications and Reviews, vol. 37, No. 2, pp. 160-172, 2007.[22] W.-J. Wang L. Leh, “Stability and stabilization of fuzzy large-scale systems,” IEEE Transactions on Fuzzy Systems, vol. 12, no. 3, pp. 309-315, 2004.[23] A. Sala and C. ArioArino, “Relaxed stability and performance conditions for Takagi-Sugeno fuzzy systems with knowledge on membership function overlap,” IEEE Transactions on Systems, Man, and Cybernetics--Part B:Cybernetics, vol. 37, No. 3, pp. 727-732, 2007.[24] T.-H. S. Li and K.-J. lin, “Composite fuzzy control of nonlinear singularly perturbed systems,” IEEE Transactions on Fuzzy Systems, vol. 15, no. 2, pp. 176-187, 2007.[25] L. Behera, I. Kar and P. Prem Kumar, “Variable-Gain controllers for nonlinear systems using the T-S Fuzzy Model,” IEEE Transactions on Systems, Man, and Cybernetics--Part B:Cybernetics, vol. 36, No. 6, pp. 1442-1449, 2006.[26] W.-J. Wang C.-H. Sun, “A relaxed stability criterion for T-S fuzzy discrete systems,” IEEE Transactions on Systems, Man, and Cybernetics--Part B:Cybernetics, vol. 34, No. 5, pp. 2155-2158, 2004.[27] C.-C. Hsiao, S.-F. Su, T.-T. Lee and C.-C. Chuang, “Hybrid compensation control for affine TSK fuzzy control systems,” IEEE Transactions on Systems, Man, and Cybernetics--Part B:Cybernetics, vol. 34, No. 4, pp. 1865-1873, 2004.[28] W.-J. Wang and W.-W. Lin, “Decentralized PDC for large-scale T-S fuzzy systems,” IEEE Transactions on Fuzzy Systems, vol. 13, no. 6, pp. 779-786, 2005.[29] T.-H. S. Li and S.-H. Tsai, “T-S fuzzy bilinear model and fuzzy controller design for a class of nonlinear systems,” IEEE Transactions on Fuzzy Systems, vol. 15, no. 3, pp. 494-506, 2007.[30] R.-J. Wang, W.-W. Lin and W.-J. Wang, “Stabilizability of linear quadratic state feedback for uncertain fuzzy time-delay systems,” IEEE Transactions on Systems, Man, and Cybernetics--Part B:Cybernetics, vol. 34, No. 2, pp. 1288-1292, 2004.[31] M. A. Wicks, P. Peleties, and R. A. Decarlo, “Switched controller synthesis for quadratic stabilization of a pair of unstable linear systems,” Eur. J. Control, vol. 4, no. 2, pp. 140–147, 1998.[32] P. Mhaskar, N. H. El-Farra and P. D. Christofides, “Predictive control of switched nonlinear systems with scheduled mode transitions,” IEEE Transactions on Automatic Control, vol. 50, no. 11, pp. 1670-1680, 2005[33] M. A. Wicks, P. Peleties, and R. A. Decarlo, “Switched controller synthesis for quadratic stabilization of a pair of unstable linear systems,” Eur. J. Control, vol. 4, no. 2, pp. 140–147, 1998.[34] K. Tanaka and M. Sugeno, “Stability analysis and design of fuzzy control systems,” Fuzzy Sets Syst., vol. 45, pp. 135–156, Jan. 1992.[35] H. O. Wang, K. Tanaka, and M. F. Griffin, “An approach to fuzzy control of nonlinear systems: Stability and design issues,” IEEE Trans. Fuzzy Syst., vol. 4, pp. 14–23, Feb. 1996.[36] Z. Ji. and L. Wang, “Quadratic stabilization of uncertain discrete-time switched linear system”, in Proc. IEEE Conf. on Systems, Man and Cybernetics, pp. 1492-1497, 2004.[37] W. T. Baumann, W. J. Rugh, “Feedback control of nonlinear systems by extended linearization,” IEEE Trans. Automat. Control 31 (1) pp. 40–46, 1986.[38] K. Tankaka, T. Ikeda, and H. O. Wang, “Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs,” IEEE Trans. Fuzzy Syst., vol. 6, pp. 250-265, May. 1998.[39] R. Plam and D. Driankov, “Fuzzy switched hybrid systems-Modelling and identification,” in Proceedings of the 1998 IEEE Intl Conf on Fuzzy Systems, Gaithersburg, MD, pp. 130-135, The IEEE Press, Piscataway, NJ, 1998.[40] A. V. Savkin and A. S. Matveev, “Cyclic linear differential automata: A simple class of hybrid dynamical systems,” Automatica, vol. 36, no. 5, pp. 727-734, Jun 2000.[41] K. Tanaka, I. Masaaki, and O. W. Hua, “Stability and smoothness conditions for switching fuzzy system,” in Proceedings of the 2000 American Control Conference, pp. 2474-2478, The IEEE Press, Piscataway, NJ, Jun. 2000.[42] C. L. Chen and M. H. Chang, “Optimal design of fuzzy sliding mode control: a comparative study,” Fuzzy Sets Syst., vol. 93, pp. 37-48, 1998.[43] H. X. Li, H. B. Gatland, and A. W. Green, “Fuzzy variable structure control,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 27, no. 2, pp. 306-312, May 1997.[44] R. Plam, “Sliding mode fuzzy control,” in Proceedings of the 1992 IEEE Intl Conf on Fuzzy System, pp. 519-526, The IEEE Press, Piscataway, NJ, 1992.[45] H. R. Berenji, “Fuzzy logic controllers,” in R. R. Yager, and L. A. Zadeh, Editors, An Introduction to Fuzzy Logic Applications in Intelligent Systems, pp. 69-76, Kluwer Academic, Boston, MA, 1993.[46] M. Sugeno, M. F. Griffin, and A. Bastian, “Fuzzy hierarchical control of an unmanned helicopter,” in Proceedings of the 5th IFSA Congress, Seul, pp. 1262-1265, The International Fuzzy System Federation, Seul, KO, 1993.[47] K. Tanaka and H. O. Wang, Fuzzy Control Systems Design and Analyss: A Linear Matrix Inequality Approach. New York: Wiley, 2001.[48] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its application to modeling and control,” IEEE Trans. Syst., Man, Cybern,. vol. 15, no. 1, pp. 116-132, Jan 1985.[49] C. L. Phillips and H. T. Nagle, “Digital control system analysis and design,” Englewood Cliffs, NJ: Prentice Hall, 1995.
 電子全文
 國圖紙本論文
 連結至畢業學校之論文網頁點我開啟連結註: 此連結為研究生畢業學校所提供，不一定有電子全文可供下載，若連結有誤，請點選上方之〝勘誤回報〞功能，我們會盡快修正，謝謝！
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 結合基因演算法與T-S模糊方法之感應馬達速度控制 2 模糊切換雙線性系統之控制器設計

 1 沈慶鴻，2004，從保護令聲請經驗思考大陸配偶婚姻暴力上的處境，社區發展季刊，第105期，PP.309-313。 2 柴松林，2005，婚姻移民及其衍生問題的解析，日新講座，第5期，9月。 3 王明輝，2004，台灣外藉配偶結構性弱勢情境之分析，社區發展季刊，第105期，9月。 4 王明鳳，2004，對東南亞外籍新娘婚姻組成及運作方式之探討，社區發展季刊，第105期，9月。 5 王良芬，2004，台北縣外籍配偶生活適應之探析—以板橋市中山社區為例，社區發展季刊，第105期，9月。 6 張淑卿，2004，大陸地區人民來台「假結婚」之探討，社區發展季刊，第105期，PP.318-321。 7 潘淑滿，2004，從婚姻移民現象剖析公民權的實踐與限制，社區發展季刊，第105期，PP.30-44。 8 薛承泰，林慧芬，2003，台灣家庭變遷—外籍新娘現象，國家政策論壇，冬季號，10月。 9 顧燕翎、尤詒君，2004，建立支持系統及倡導多元文化—台北市政府社會局外藉與大陸配偶輔導政策，社區發展季刊，第105期，3月，P.20。

 1 時間延遲切換系統之穩定性分析與切換法則設計 2 使用切換系統理論之T-S模型穩定性分析 3 時間延遲大型切換系統之穩定性分析 4 以H∞/LTR具輸出入限制非線性動用系统模糊控制設計基于t-s模糊模型 5 T-S 模糊系統具不確定項與輸出雜訊之觀測器設計 6 結合T-S模糊模型與積分型順滑模控制技術之可靠度控制研究 7 T-S模糊模型之擾動衰減分析 8 針對具乘積式雜訊Takagi-Sugeno模糊模型之被動模糊控制及其電力系統動態穩定度研究之應用 9 針對嚴格回授非線性不確定系統輔以觀察器之強健適應模糊控制器 10 結合T-S模糊模型與變結構控制技術於軌跡追蹤及可靠度控制之研究 11 以ALTERADSPBuilder在FPGA實現通訊系統之可模擬數位濾波器 12 大面積TiO2薄膜應用於染料敏化太陽電池之研究 13 嵌入式系統架構實現即時追熱系統 14 以FPGA為基礎研製線型X-Y平台運動控制器 15 以SOPC為基礎兩足步行機器人運動控制系統之研製

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室