跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/25 07:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王志傑
研究生(外文):Wang Chih Chieh
論文名稱:切換非線性系統經由模糊控制技術之分析與混合
論文名稱(外文):Analysis and Synthesis of Switched Nonlinear Systems via Fuzzy Control Approach
指導教授:邱俊賢邱俊賢引用關係
指導教授(外文):Juing-Shian Chioua
學位類別:碩士
校院名稱:南台科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:98
外文關鍵詞:switched systemT-S fuzzy modelLyapunov function
相關次數:
  • 被引用被引用:0
  • 點閱點閱:76
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
在此論文中,我們提出以Lyapunov穩定性定理的方法作為基礎並且對於當離散時間和連續時間T-S糢糊切換系統存在狀態變數切換法則時,使其穩定化和設計切換法則的研究。然而,我們所提出的這些方法對於當所有的個別子系統均為不穩定狀態之下,仍然可以達到我們期望的控制目標。而PDC的方法是經由T-S模糊模型的設計使用於模糊控制器上,穩定化的問題被縮減成為一個必須對於一群線性矩陣不等式中找到存在其中的共同Lyapunov函數的問題。並且,與LMIs有關的凸面最佳化技術(Convex optimization techniques)被利用於找出一個共同Lyapunov函數和穩定回授增益並滿足T-S模糊切換連續/離散系統。
最後,探討一些例子加以說明所提出方法實現之可行性。
In this thesis, the methods based on Lyapunov stability theorem to study the stabilization and switching law design for the T-S fuzzy switched continuous-time and discrete-time systems with state-driven switching method are presented. Furthermore, these methods can be applied to cases when all individual subsystems are unstable. The PDC is employed to design fuzzy controllers from the T-S fuzzy models. The stabilization analysis is reduced to a problem of finding a common Lyapunov function for a set of linear matrix inequalities. Therefore, convex optimization techniques involving LMIs are utilized to find a common Lyapunov function and stable feedback gains satisfying T-S fuzzy switched continuous/discrete system.
Finally, some numerical examples and an application to a chemical process example will be given to show the merits of the proposed approach, respectively.
Chapter 1. Introduction 1
1.1 Background 1
1.2 Research Motivation 4
1.3 Organization of Thesis 5

Chapter 2. Switched System and T-S Fuzzy Model 6
2.1 Switched System 6
2.1.1 System Statement 6
2.1.2 Stability of Switched System 7
2.2 T-S Fuzzy Model 9
2.2.1 The Model of T-S Fuzzy Continuous-time system 9
2.2.2 Stability Analysis for T-S Fuzzy Continuous-time System 10
2.2.3 Parallel Distributed Compensation for T-S Fuzzy Continuous-time System 11
2.2.4 The Model of T-S Fuzzy Discrete-time System 13
2.2.5 Stability Analysis for T-S Fuzzy Discrete-time System 14
2.2.6 Parallel Distributed Compensation for T-S Fuzzy Discrete-time System 15

Chapter 3. Stability Analysis and Design of T-S Fuzzy Switched System 17
3.1 Introduction 17
3.2 Stability Analysis of T-S Fuzzy Switched Continuous-time System 18
3.2.1 System Description and Problem Statement 18
3.2.2 Stability Condition for T-S Fuzzy Switched Continuous-time System with Two Individual System 19
3.2.3 Stability Condition for T-S Fuzzy Switched Continuous-time System with Multiple Individual System 24
3.2.4 Example for T-S Fuzzy Switched Continuous-time System 28
3.3 Stability Analysis of T-S Fuzzy Switched Discrete-time System 34
3.3.1 System Description and Problem Statement 34
3.3.2 Stability Condition for T-S Fuzzy Switched Discrete-time System with Two Individual System 38
3.3.3 Stability Condition for T-S Fuzzy Switched Discrete-time System with Multiple Individual System 43
3.3.4 Example for T-S Fuzzy Switched Discrete-time System 47

Chapter 4. Stabilization of T-S Fuzzy Switched System 53
4.1 Stabilization of T-S Fuzzy Switched Continuous-time System 53
4.1.1 Stabilization for T-S Fuzzy Switched Continuous-time System with Two Individual System 53
4.1.2 Stabilization for T-S Fuzzy Switched Continuous-time System with Multiple Individual System 60
4.1.3 Example for T-S Fuzzy Switched Continuous-time System 64
4.2 Stabilization of T-S Fuzzy Switched Discrete-time System 74
4.2.1 Stabilization for T-S Fuzzy Switched Discrete-time System with Two Individual System 74
4.2.2 Stabilization for T-S Fuzzy Switched Discrete-time System with Multiple Individual System 82
4.2.3 Example for T-S Fuzzy Switched Discrete-time System 86

Chapter 5. Conclusion and Future Research 92
5.1 Conclusion 92
5.2 Future Research 93

Reference
[1] D. Liberzon and A. S. Morse, “Basic problems in stability and design of switched systems”, IEEE Control Systems Magazine, 19, pp. 59-70, 1999.
[2] A. S Morse, “Supervisory control of families of linear set-point controllers-part 1: exact matching”, IEEE Transactions on Automatic Control, vol. 41, no. 10, pp. 1413-1431, 1996.
[3] M. W. Hofbaur and B. C. Williams, “Hybrid estimation of complex systems,” IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics, vol. 34, No. 5, pp. 2178-2191, 2004.
[4] A. A. Agrachev and D. Liberzon, “Lie-algebraic stability criteria for switched systems”, SIAM J. Control Opt., vol. 41, no. 1, pp. 253-269, 2001.
[5] D. Cheng, L. Guo and J. Huan, “On quadratic Lyapunov functions”, IEEE Transactions on Automatic Control, vol. 48, no. 5, pp. 885-890, 2003.
[6] W. P. Dayawansa and C. F. Martin, “A converse Lyapunov theorem for a class of dynamical systems which undergo switching,” IEEE Transactions on Automatic Control, vol. 44, no. 4, pp. 751-760, 1999.
[7] Z. G. Li, C. Y. Wen and Y. C. Soh, “Stabilization of a class of switched systems via designing switching laws”, IEEE Transactions on Automatic Control, vol. 46, no. 4, pp. 665-670, 2001.
[8] Z. Sun and S. S. Ge, “Analysis and synthesis of switched linear control systems”, Automatica, vol. 41, pp. 181-195, 2005.
[9] E. Skafidas, R. J. Evans, A. V. Savkin and I. R. Petersen, “Stability results for switched controller systems”, Automatica, vol. 35, pp. 553-556, 1999.
[10] J. P. Hespanha and A. S. Morse, “Stability of switched systems with average dwell-time”, in Proc. IEEE Conf. Decision and Control, pp. 2655-2660, 1999.
[11] G. Zhai, B.Hu, K. Yasuda and A. N. Michel, “Stability analysis of switched systems with stable and unstable subsystems: an average dwell time approach”, Int. J. Systems Science, vol. 32, pp. 1055-1061, 2001.
[12] B. Lu and F. Wu, “Switching LPV control design using multiple parameter-dependent Lyapunov functions”, Automatica, vol. 40, pp. 1973-1980, 2004.
[13] S. H. Lee, T. H. Kim and J. T. Lim, “A new stability analysis of switched systems”, Automatica, vol. 36, pp. 917-922, 2000.
[14] J.-S. Chiou, “Stability Analysis for a Class of Switched Large-scale Time-delay Systems via Time-switched Method ,“IEE Proc.-Control Theory Appl., vol. 153, pp. 684-688, 2006.
[15] K. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications to modeling and control,” IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics, vol. 15, No. 1, pp. 116-132, 1985.
[16] W.-W. Lin, W.-J. Wang and S.-H. Yang, “A noval stabilization criterion for large-scale T-S fuzzy system,” IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics, Accepted for future publication, 2007.
[17] W.-J. Wang, Y.-J. Chen and C.-H. Sun, “Relaxed stabilization criteria for discrete-time T-S fuzzy control systems based on a switching fuzzy model and piecewise Lyapunov function,” IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics, vol. 37, No. 3, pp. 551-559, 2007.
[18] H.-N. Wu, “Delay-dependent stability analysis and stabilization for discrete-time fuzzy systems with state delay: a fuzzy Lyapunov-Krasovskii functional approach,” IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics, vol. 36, No. 4, pp. 954-962, 2006.
[19] T.-H. S Li and K.-J. Lin, “Stabilization of singularly perturbed fuzzy systems,” IEEE Transactions on Fuzzy Systems, vol. 12, no. 5, pp. 579-595, 2004.
[20] A. H. Sonbol and M. S. Fadali, “TSK fuzzy systems types II and III stability analysis: continuous case,” IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics, vol. 36, No. 1, pp. 2-12, 2006.
[21] T. Chai, D. Yang and H. Zhang, “Guaranteed cost networked control for T-S fuzzy systems with time delays,” IEEE Transactions on Systems, Man, and Cybernetics-Part C:Applications and Reviews, vol. 37, No. 2, pp. 160-172, 2007.
[22] W.-J. Wang L. Leh, “Stability and stabilization of fuzzy large-scale systems,” IEEE Transactions on Fuzzy Systems, vol. 12, no. 3, pp. 309-315, 2004.
[23] A. Sala and C. ArioArino, “Relaxed stability and performance conditions for Takagi-Sugeno fuzzy systems with knowledge on membership function overlap,” IEEE Transactions on Systems, Man, and Cybernetics--Part B:Cybernetics, vol. 37, No. 3, pp. 727-732, 2007.
[24] T.-H. S. Li and K.-J. lin, “Composite fuzzy control of nonlinear singularly perturbed systems,” IEEE Transactions on Fuzzy Systems, vol. 15, no. 2, pp. 176-187, 2007.
[25] L. Behera, I. Kar and P. Prem Kumar, “Variable-Gain controllers for nonlinear systems using the T-S Fuzzy Model,” IEEE Transactions on Systems, Man, and Cybernetics--Part B:Cybernetics, vol. 36, No. 6, pp. 1442-1449, 2006.
[26] W.-J. Wang C.-H. Sun, “A relaxed stability criterion for T-S fuzzy discrete systems,” IEEE Transactions on Systems, Man, and Cybernetics--Part B:Cybernetics, vol. 34, No. 5, pp. 2155-2158, 2004.
[27] C.-C. Hsiao, S.-F. Su, T.-T. Lee and C.-C. Chuang, “Hybrid compensation control for affine TSK fuzzy control systems,” IEEE Transactions on Systems, Man, and Cybernetics--Part B:Cybernetics, vol. 34, No. 4, pp. 1865-1873, 2004.
[28] W.-J. Wang and W.-W. Lin, “Decentralized PDC for large-scale T-S fuzzy systems,” IEEE Transactions on Fuzzy Systems, vol. 13, no. 6, pp. 779-786, 2005.
[29] T.-H. S. Li and S.-H. Tsai, “T-S fuzzy bilinear model and fuzzy controller design for a class of nonlinear systems,” IEEE Transactions on Fuzzy Systems, vol. 15, no. 3, pp. 494-506, 2007.
[30] R.-J. Wang, W.-W. Lin and W.-J. Wang, “Stabilizability of linear quadratic state feedback for uncertain fuzzy time-delay systems,” IEEE Transactions on Systems, Man, and Cybernetics--Part B:Cybernetics, vol. 34, No. 2, pp. 1288-1292, 2004.
[31] M. A. Wicks, P. Peleties, and R. A. Decarlo, “Switched controller synthesis for quadratic stabilization of a pair of unstable linear systems,” Eur. J. Control, vol. 4, no. 2, pp. 140–147, 1998.
[32] P. Mhaskar, N. H. El-Farra and P. D. Christofides, “Predictive control of switched nonlinear systems with scheduled mode transitions,” IEEE Transactions on Automatic Control, vol. 50, no. 11, pp. 1670-1680, 2005
[33] M. A. Wicks, P. Peleties, and R. A. Decarlo, “Switched controller synthesis for quadratic stabilization of a pair of unstable linear systems,” Eur. J. Control, vol. 4, no. 2, pp. 140–147, 1998.
[34] K. Tanaka and M. Sugeno, “Stability analysis and design of fuzzy control systems,” Fuzzy Sets Syst., vol. 45, pp. 135–156, Jan. 1992.
[35] H. O. Wang, K. Tanaka, and M. F. Griffin, “An approach to fuzzy control of nonlinear systems: Stability and design issues,” IEEE Trans. Fuzzy Syst., vol. 4, pp. 14–23, Feb. 1996.
[36] Z. Ji. and L. Wang, “Quadratic stabilization of uncertain discrete-time switched linear system”, in Proc. IEEE Conf. on Systems, Man and Cybernetics, pp. 1492-1497, 2004.
[37] W. T. Baumann, W. J. Rugh, “Feedback control of nonlinear systems by extended linearization,” IEEE Trans. Automat. Control 31 (1) pp. 40–46, 1986.
[38] K. Tankaka, T. Ikeda, and H. O. Wang, “Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs,” IEEE Trans. Fuzzy Syst., vol. 6, pp. 250-265, May. 1998.
[39] R. Plam and D. Driankov, “Fuzzy switched hybrid systems-Modelling and identification,” in Proceedings of the 1998 IEEE Intl Conf on Fuzzy Systems, Gaithersburg, MD, pp. 130-135, The IEEE Press, Piscataway, NJ, 1998.
[40] A. V. Savkin and A. S. Matveev, “Cyclic linear differential automata: A simple class of hybrid dynamical systems,” Automatica, vol. 36, no. 5, pp. 727-734, Jun 2000.
[41] K. Tanaka, I. Masaaki, and O. W. Hua, “Stability and smoothness conditions for switching fuzzy system,” in Proceedings of the 2000 American Control Conference, pp. 2474-2478, The IEEE Press, Piscataway, NJ, Jun. 2000.
[42] C. L. Chen and M. H. Chang, “Optimal design of fuzzy sliding mode control: a comparative study,” Fuzzy Sets Syst., vol. 93, pp. 37-48, 1998.
[43] H. X. Li, H. B. Gatland, and A. W. Green, “Fuzzy variable structure control,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 27, no. 2, pp. 306-312, May 1997.
[44] R. Plam, “Sliding mode fuzzy control,” in Proceedings of the 1992 IEEE Intl Conf on Fuzzy System, pp. 519-526, The IEEE Press, Piscataway, NJ, 1992.
[45] H. R. Berenji, “Fuzzy logic controllers,” in R. R. Yager, and L. A. Zadeh, Editors, An Introduction to Fuzzy Logic Applications in Intelligent Systems, pp. 69-76, Kluwer Academic, Boston, MA, 1993.
[46] M. Sugeno, M. F. Griffin, and A. Bastian, “Fuzzy hierarchical control of an unmanned helicopter,” in Proceedings of the 5th IFSA Congress, Seul, pp. 1262-1265, The International Fuzzy System Federation, Seul, KO, 1993.
[47] K. Tanaka and H. O. Wang, Fuzzy Control Systems Design and Analyss: A Linear Matrix Inequality Approach. New York: Wiley, 2001.
[48] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its application to modeling and control,” IEEE Trans. Syst., Man, Cybern,. vol. 15, no. 1, pp. 116-132, Jan 1985.
[49] C. L. Phillips and H. T. Nagle, “Digital control system analysis and design,” Englewood Cliffs, NJ: Prentice Hall, 1995.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top