跳到主要內容

臺灣博碩士論文加值系統

(44.222.134.250) 您好!臺灣時間:2024/10/07 03:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳寬殷
研究生(外文):Kuan-Yin Chen
論文名稱:使用切換系統理論之T-S模型穩定性分析
論文名稱(外文):Analysis T-S Model Stability on the Switching Systems
指導教授:王啟州
指導教授(外文):Chi-Jo Wang
學位類別:碩士
校院名稱:南台科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:77
中文關鍵詞:t-s模糊系統切換系統最糟切換路徑
外文關鍵詞:Joint spectral radiusLyapunov functionMORG
相關次數:
  • 被引用被引用:0
  • 點閱點閱:196
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用切換系統文獻理論,對連續時T-S模糊控制系統的穩定性分析,做出更為明確的穩定性討論。
T-S 模糊控制系統穩定性文獻中,已有利用模糊分割與模糊規則庫,使子系統矩陣間存在二次的共同正定 矩陣的條件較不嚴苛。透過模糊分割可以將T-S 模糊控制系統分割成數個系統群,群內各系統間計算共同 矩陣可以較容易得到穩定性的結果。基本上,本論文承襲這樣的論點,針對2階系統,使用最糟切換法則、Joint spectral radius 的技巧來改進現有文獻中,當群組內二次的共同正定 矩陣無法得到,便無法得到穩定性結論的結果。依模糊規則庫而行的切換軌跡,是否連結成最糟切換路徑,對於判斷系統是否穩定具有相當大的助益。
Joint spectral radius 的技巧可適用於任何階數的系統矩陣,對於穩定性的分析較不具限制性,不過它的計算非常煩雜。本論文提出Joint spectral radius技巧的著眼點,在於它在離散時切換系統穩定性分析伴演著關鍵的角色。若各系統停留時間已知,切換次序不明的情形下,相較於尋找共同 矩陣的分析法,Joint spectral radius技巧能對連續時T-S模糊控制系統的穩定性分析獲致較不保守的結論。
Investigated in this thesis, is a stability analysis for T-S fuzzy control systems using switched systems theory, which leads to more conclusive results.
In the T-S fuzzy model stability literature, structural information of the fuzzy rules were intelligently incorporated to develop the concept of the maximal overlapped-ruled groups (MORG) to achieve a sufficient condition for stability, which was much less conservative compared with earlier ones. In each of such groups, the task of finding a common quadratic Lyapunov function is much simplified. However, when the search of a common positive definite P matrix failed, stability analysis is inconclusive. In that regard, for second-order systems, we use the concepts of worst case switching law and joint spectral radius adopted from switched-system stability analysis to reduce the conservatism of existing methods.
Despite the inherent difficulty of computation, the concept of joint spectral radius is also applicable to the analysis of higher-order discrete-time switched systems. In view of the fact that the determination of stability requires only the knowledge of joint spectral radius being less than 1, rather than the exact number of joint spectral radius, we consider efforts to estimate joint spectral radius worthwhile. When the dwelling time for each subsystem is known, joint spectral radius can be used in the stability analysis of continuous-time switched system, and are more likely to lead to a conclusion than current quadratic Lyapunov function based methods.
摘要 Ⅴ
英文摘要 Ⅵ
目次 Ⅶ
圖目錄 Ⅸ
第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究背景 2
1.3 研究方法 4
1.4 內容架構 6
第二章 模糊系統概要 7
2.1 模糊邏輯控制器 7
2.1.1 模糊控制概要 7
2.2.2 模糊化 9
2.2.2 知識庫 10
2.2.3 模糊決策邏輯 11
2.2.4 解模糊化 12
2.2.4 T-S 模糊系統 13
2.2 MORG理論 15
2.2.4 MORG概要 15
2.2.4 MORG定義 15
2.2.5 MORG穩定性解析 19
2.3 MORG群組結果 21
第三章 最糟切換路徑 25
3.1 Lyapunov function 25
3.2 最糟切換的計算 32
3.2.1 系統軌跡順逆判斷式 33

3.2.2 最糟切換群組分配 38
第四章 Joint spectral radius 39
4.1 範數(Norm) 39
4.1.1 向量範數 39
4.1.2 矩陣範數 40
4.1.3 Spectral radius 41
4.2 Joint spectral radius定義 42
4.2.1 Joint spectral radius上下邊界 43
4.2.2 kronecker lifting 45
4.2.3 Semidefinite lifting 47
4.2.4 Ellipsoid norm approximation 48
第五章 研究分析與討論 49
5.1 研究成果 49
5.2 延伸研究成果 56
5.2.1 延伸研究成果一 56
5.2.2 延伸研究成果二 59
第六章 結論 62
參考文獻 63
[1]L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, pp. 338-352, 1965.
[2] L. A. Zadeh, “Fuzzy algorithms,” Information and Control, vol. 12, no. 2, pp. 94-102, 1968.
[3] L.A. Zadeh, “Outline of a new approach to the analysis of complex systems anddecision process,” IEEE Trans. Syst., Man, Cybern., vol. 3, no. 1, pp.28-44, 1973.
[4] L. X. Wang, A course in fuzzy systems and control, Prentice Hall, Englewood Cliffs, NJ. 1997.
[5] K. Tanaka and H. O. Wang, Fuzzy control systems design and analysis: A linear matrix inequality approach, John Wiley & Sons Inc. New York, 2001.
[6] P. Gahinet, A. Nemirovski, A. J. Laub and M. Chilali, LMI control toolbox user’s guild, Netick, MA: Math Works, 1995.
[7] Zhi-Hong Xiu and Guang Ren, “Stability analysis and systematic design of Takagi-Sugeno fuzzy control systems,” Fuzzy Sets and Syst., vol. 151, pp. 119-138, 2005.

[8] Wijesuriya P. Dayawansa and C. F. Martin, “A converse lyapunov theorem for a class of dynamical systems which undergo switching,” IEEE Trans. Automat. Contr., vol. 44, no. 4, pp.751-760, 1999.
[9] Michael Margaliot and Gideon Langholz, “Necessary and sufficient conditions for absolute stability: The case of second-order systems,” IEEE Trans. Circuits Syst. I, vol. 50, no.2, pp.227-234, 2003.
[10] Luca Greco, Fabrizio Tocchini and Mario Innocenti, “A geometry-based algorithm for the stability of planar switching systems,” International Journal of Systems Science, vol. 37, no. 11, pp. 747-761, 2006.

[11] Vincent D. Blondel and Yurii Nesterov, “Computationally efficient approximations of the joint spectral radius,” SIAM J. Matrix Anal Appl., vol. 27, no.1, pp. 256-272, 2005.
[12] Vincent D. Blondel, Yurii Nesterov and Jacques Theys, “On the accuracy of the ellipsoid norm approximation of the joint spectral radius,” Linear Algebra and its Applications, vol. 394, pp. 91-107, 2005.
[13] C.C. Lee, “Fuzzy Logic in Control System: Fuzzy Logic Controller-Part I,” IEEE Trans. Syst., Man, Cybern, vol. 20, pp. 404-418, 1990.
[14] C.C. Lee, “Fuzzy Logic in Control Systems: Fuzzy Logic Controller-Part II,” IEEE Trans. on Syst, Man, Cybern, vol. 20, pp.419-435, 1990.
[15] E. H. Mamdani and S. Assilian, “An experiment in linguistic sythesis with a fuzzy logic controller,” Int. Journal of Man-Machine studies, vol. 7, no.1, pp.1-13, 1975.
[16] T.Tankagi and M.Sugeno, “Fuzzy identificstion of systems and its applications to moding and control,” IEEE Trans. Syst., Man, Cybern, vol. 15, no.1, pp.116-132, 1985.
[17] Y. Tsukamoto, “An approach to fuzzy reasoning,” in Madan M. Gupta and Rammohaw K. Ragade, theory and applications, North-Holland, Ameterdam, pp. 137-149, 1979.
[18] L. A. Zadeh, “Outline of a new approach to the analysis of complex systems and decision processes,” IEEE Trans. Syst., Man, Cybern., SMC-1, pp. 28-44, 1973.
[19] A Kaufmann, Introduction to the theory of fuzzy subsets, New York : Academic Press, 1975.
[20] M. Mizumoto, “Fuzzy sets and their operations,” Int. Control, vol. 48, pp. 30-48, 1981.
[21] Michael S. Branicky, “Multiple lyapunov function and other analysis tools for switched and hybrid systems,” IEEE Trans. Automat. Contr., vol. 43, no. 4, pp. 475-482, 1998.

[22] R.A. Horn and C.R. Johnson, Matrix Analysis, Cambridge Univ. Press, 1985.
[23] M.A.L. Thathachar and Pramod Viswanath, “On the stability of fuzzy system,” IEEE Trans. Fuzzy Syst., vol. 5, no. 1, pp.145-151, 1997.
[24] David Holcman and Michael Margaliot, “Stability analysis of second-order switched homogeneous systems,” SIAM J. Contr. Opt., vol. 41, no. 5, pp. 1609-1625, 2003.
[25] Jeffrey C. Lagarias and Yang Wang, “The finiteness conjecture for the generalized spectral radius of a set of matrices,” Linear Algebra Appl., vol. 214, pp. 17-42, 1995.
[26] Mau Hsiang Shih, Jinn Wen Wu and Chin Tzong Pang, “Asymptotic stability and generalized gelfand spectral radius formula,” Linear Algebra Appl., vol. 252, pp. 61-70, 1997.
[27] Euntai Kim and Heejin Lee, “New approaches to relaxed quadratic stability condition of fuzzy control systems,” IEEE Trans. Fuzzy Syst., vol. 8, no. 5, pp. 523-534, 2000.
[28] Gustaf Gripenberg “Computing the joint spectral radius,” Linear Algebra Appl., vol. 234, pp. 43-60, 1996.
[29] Mohsen Maesumi “An efficient lower bound for the generalized spectral radius of a set of matrices,” Linear Algebra Appl., vol. 240, pp. 1-7, 1996.
[30] Kazuo Tanaka, Takayuki Ikeda and Hua O. Wang, “Robust stabilization of a class of uncertain nolinear systems via Fuzzy control: quadratic stabilizability, control theory, and linear matrix inequalities,” IEEE Trans. Fuzzy Syst., vol. 4, no. 1, pp. 1-13, 1996.

[31] Fabian Wirth, “The generalized spectral radius and extremal norms,” Linear Algebra Appl., vol. 342, pp. 17-40, 2002.

[32] Chin Tzong Pang and Sy Ming Guu, “Sufficient conditions for the stability of linear Takagi-Sugeno free fuzzy systems,” IEEE Trans. Fuzzy Syst., vol. 11, no. 5, pp.695-700, 2003.
[33] Michael Margaliot and Rabin Gitizadeh, “The problem of absolute stability: a dynamic programming approach,” Automatica, vol. 40 pp. 1247-1252, 2004.
[34] N. Guglielmi, F. Wirth and M. Zennaro, “Complex polytope extremality results for families of matrices,” SIAM J. Matrix Anal. Appl., vol. 27, no. 3, pp. 721-743, 2005.
[35] Wen June Wang and Chung Hsun Sun, “Relaxed stability and stabilization condition for a T-S fuzzy discret system,” Fuzzy Sets and Syst., vol. 156, pp. 208-225, 2005.
[36]王進德、蕭大全,類神經網路與模糊控制理論入門,台北市:全華科技 1994。
[37] 王文俊,認識Fuzzy,台北市:全華科技1997。
[38] 蘇本春、張孝德,機器學習:類神經網路、模糊系統及基因演算法則,台北市:全華科技,1989。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top