(34.239.176.198) 您好!臺灣時間:2021/04/23 19:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:莊智傑
研究生(外文):Chuang, Chih-Chieh
論文名稱:痰音偵測暨姿位引流衛教輔助聽診系統
論文名稱(外文):Computer-Aided Auscultation and Instruction System for Measuring, Analysis and Recognition of Lung Sounds with Sputum
指導教授:侯春茹侯春茹引用關係
指導教授(外文):Hou, Chun-Jou
學位類別:碩士
校院名稱:南台科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:108
中文關鍵詞:肺音痰音偵測姿位引流衛教訊號分析
外文關鍵詞:lung soundrecognition of sputum soundshealth education for postural drainagesignal analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:451
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:79
  • 收藏至我的研究室書目清單書目收藏:0
一般病患若是呼吸道中產生黏液(痰)可以求助醫生或自行排出,但是對於長期臥病在床、肺部慢性病、氣管插管之病患有可能因為黏液分泌過多造成呼吸道嚴重阻塞而窒息死亡。在身體評估檢查中,聽診器是一種最常見且便宜、方便使用的醫療儀器,但文獻指出醫護人員之聽診技能逐漸下降,無法正確判斷病徵。在台灣,醫護人員人力不足的問題往往無法改善,而看護工或家庭照顧者並沒有專業的照護知識,因此本研究的目的為建立一套痰音偵測暨姿位引流衛教輔助系統,利用數位訊號處理與分析技術,客觀的量化肺音訊號之特徵辨識肺中的痰音。系統之建立包括,(1)肺音訊號擷取硬體電路:包含類比放大電路、濾波電路、數位轉換電路及傳輸電路;(2)軟體訊號分析:包含時域與頻域分析;(3)衛教系統:包含聽診教育訓練與姿位引流衛教影片;(4)資料庫之建立:包含病歷資料庫與肺音資料庫。
系統實驗測試與驗證包括:系統校準、假體實驗與活體實驗。1.假體實驗:共有三種實驗設計,呼吸音在空氣的傳導、呼吸音透過水中的傳導、呼吸音經由豬肉組織的傳導,並分為控制組(無黏液)與實驗組(有黏液),進行參數統計分析; 2.活體實驗:量測8位平均年紀為24歲無肺部疾病之受測者、兩位平均年紀為80歲之肺部有痰與無痰之老人。系統實驗分析參數包括變異數、中位數頻率、平均數頻率。
本系統校準結果顯示:系統頻率響應特性範圍在80Hz ~ 1.2kHz、輸入與輸出特性呈線性、訊號雜訊比為45dB ~ 55dB。在假體實驗一結果顯示:無論是在吸氣、呼氣、吸呼期,經由配對T檢定後其控制組與實驗組均有顯著性差異;在假體實驗二結果顯示:僅在吸氣、呼氣期經由配對T檢定後其控制組與實驗組有顯著性差異,合併分析吸呼期則無顯著性差異;在假體實驗三結果顯示:無論是在吸氣、呼氣、吸呼期,經由配對T檢定後其控制組與實驗組均有顯著性差異。而活體實驗一結果顯示:8位無肺部疾病受測者其氣管音經由單因子變異數分析後,僅有一位有顯著性差異。
故本研究痰音偵測暨姿位引流衛教輔助系統,利用正常肺音與異常肺音(痰音)在頻域上的差異性,經由參數上的統計判斷肺部中是否有積痰的情形,且針對肺部不同部位積痰情況,適時的播放出正確的姿位引流與胸部扣擊的技術影片,輔助看護工或家庭照護者照護病患將肺中之痰排出。在痰音辨識方面,經由實驗與統計分析證明本系統可區別無痰與有痰之呼吸音。本研究經過實驗後發現呼吸音訊號倘若摻雜過多雜訊,將導致系統參數統計分析上的錯誤,在未來系統需改進的地方包括提高訊雜比來減少電磁雜音的干擾及增加自動增益電路,以防止爆裂音產生,並加入其他數位訊號處理技術如小波、適應性濾波器來濾除外界環境干擾雜訊。
A conscious patient whose respiratory passage is obstructed by the mucus can eliminate the obstruent oneself or appeal to physicians for help, but a long-term bed-ridden or tracheal-intubated patient, who cannot remove the mucus oneself or call for help, could have a severe respiratory obstruction as well as die of an asphyxia. Stethoscope is a convenient and inexpensive tool for lung evaluation and examination. Since auscultative skills of clinicians had gradually declined, they cannot accurately diagnose diseases. In Taiwan, with the lack of clinical manpower, attendants are usually assigned to take care of patients instead of professional nurses. They lack professional knowledge for immediately observing patient’s respiratory passage to be obstructed.
The purpose of this study was to establish a computer-aided auscultation and instruction system for measuring, analysis and recognition of lung sounds with sputum. Digital signal processing and analysis techniques were used for objectively quantifying characteristics of lung sounds and recognizing sputum sounds. Four specific aims were (1) to build a hardware system for signal acquisition of lung sounds, including analog amplifier circuit, filter circuit, analog-to digital converting circuit, and data transmission circuit; (2) to build a graphic user’s interface based on Matlab software for digital signal processing and analysis, including time- and frequency-domain analysis; (3) to build a health education system for training of auscultative skills and postural drainage; (4) to build a database for a case history and lung sound records.
System calibration, phantom and in vivo experiments were performed for validating and verifying system feasibility. Three experimental designs for phantom experiments were: (1) Phantom I: lung sounds measured from air conduction, (2) Phantom II: lung sounds measured from water conduction, and (3) Phantom III: lung sounds measured from pork conduction. Two groups, a normal passage for control group and a passage with mucus for treatment group, were designed for each experiment. In vivo experiments, 8 normal subjects with the average age of 24 years old and 2 aged subjects with the average age of 80 years old voluntarily participated in the study. Characteristic parameters for statistical analysis were variance, median frequency and mean frequency extracted from lung sounds.
The results for system calibration show the flatness in system frequency response between 80 Hz and 1.2 kHz, the linearity in input-output curve, a adjustable gain between 20 and 200 times, and appropriate signal-to-noise ratios between 45dB and 55 dB. In phantom I, the results for the analysis of inspiratory stage, expiratory stage and inspiratory-expiratory stage show a significant difference between control and treatment groups. In phantom II, the results for the analysis of inspiratory stage and expiratory stage show a significant difference between control and treatment groups and non-significant difference in the inspiratory-expiratory stage. In phantom III, the results for the analysis of inspiratory stage, expiratory stage and inspiratory-expiratory stage show a significant difference between control and treatment groups. In vivo experiment, compared with lung sounds of 8 normal subjects, only one subject is different from other subjects. Because in vivo the sample size in the treatment group is too small for statistical test, this study cannot illustrate a significant recognition for in vivo sputum sounds.
Based on experimental designs and statistical analysis, this study proposed a feasible system for measuring, analysis and recognition of lung sounds and training of respiratory care. In the future, improvements in the system include raising signal-to-noise ratio, reducing electromagnetic interference, designing an auto-gain control circuit, and adding advanced signal processing and analysis techniques.
摘 要 ii
Abstract iv
致謝 vi
目 錄 vii
表目錄 ix
第一章 緒論 1
1-1背景及文獻探討 2
1-1-1肺音的生理機轉 2
1-1-2 肺音的分類 3
1-1-3 肺音的量測分析與臨床應用 7
1-2 研究動機 8
1-3 研究目的 9
第二章 材料與方法 10
2-1系統架構流程 10
2-2 肺音訊號擷取硬體電路 10
2-2-1 硬體規格簡介 10
2-2-2 類比電路設計 11
2-2-3 數位電路設計 18
2-3 軟體訊號分析 26
2-3-1 時域分析 27
2-3-2 頻域分析 28
2-3-3 時頻分析 32
2-4使用者介面與資料庫 33
2-5系統校準 36
2-6 實驗設計 38
2-6-1 假體實驗 39
2-6-2 活體實驗 41
2-6-3 參數統計分析 42
第三章 實驗結果與討論 44
3-1 假體模擬實驗結果 44
3-1-1假體模擬實驗一:呼吸音在EVA管內之量測 45
3-1-2假體模擬實驗二:呼吸音經由水介質傳導之量測 62
3-1-3假體模擬實驗三:呼吸音經豬肉組織介質傳導之量測 79
3-1-4控制組與實驗組之統計比較結果 96
3-2 活體實驗結果 97
3-2-1 八位正常年輕受測者之分析結果 98
3-2-2 兩位老人受測者之分析結果 101
第四章 結論與建議 105
4-1 結論 105
4-2 建議 106
參考文獻 108
[1]蔡秀鸞,身體檢查與評估,華格那出版有限公司,2004。
[2]邱豔芬,身體評估:護理上之應用,華杏出版社,1997。
[3]李和惠,身體檢查與評估,永大出版社,1998。
[4]原著Carolyn,理學檢查與健康評估,藝軒圖書出版社,2002。
[5]Lam M .Z. C. (2005), “Factors influencing cardiac auscultation proficiency in physician trainess” , Singapore Med J, 46(1):11-14
[6]Day, T., Wainwright, S. P., & Wilson-Barnett, J., “An evaluation of a teaching intervention to improve the practice of endotracheal suctioning in intensive care units”, Journal of Clinical Nursing, 10: 682-696. 2001.
[7]Guglielminotti, J., Alzieu, M., Maury, E., Guidet, B., & Offenstadt, G. “Bedside detection of retained tracheobronchial secretions in patients receiving mecheanical ventilation: is it time for tracheal suctioning?”, The Cardiopulmonary and Critical Care Journal, 118(4): 1095-1099, 2000.
[8]Carroll, P., “Safe Suctioning”, Registered Nurse, 57(5): 32-37, 1994.
[9]Wood, C. J., “Endotracheal suctioning: a literature review”, Intensive and Critical Care Nursing, 14: 124-136, 1998.
[10]陳敬雄,呼吸照護病房之現況與未來。台灣醫界。45(3):43-45, 2002.
[11]Griggs, A. Tracheostomy:suctioning and humidification. Nursing Standard, 13(2): 49-56, 1998.
[12]Day, T., Wainwright, S. P., & Wilson-Barnett, J. An evaluation of a teaching intervention to improve the practice of endotracheal suctioning in intensive care units. Journal of Clinical Nursing, 10: 682-696, 2001.
[13]Fiorentini, A. Potential hazards of tracheobronchial suctioning. Intensive and Critical Care Nursing, 8(4): 217-226, 1992.
[14]American Association of Respiratory Care. AARC Clinical practice guideline: endotracheal suctioning of mechanically ventilated adults and children with artificial airways. Respiratory Care, 38(4): 500-504, 1993.
[15]Carroll, P. Safe Suctioning. Registered Nurse, 57(5): 32-37, 1994.
[16]Guglielminotti, J., Alzieu, M., Maury, E., Guidet, B., & Offenstadt, G. Bedside detection of retained tracheobronchial secretions in patients receiving mecheanical ventilation: is it time for tracheal suctioning?. The Cardiopulmonary and Critical Care Journal, 118(4): 1095-1099, 2000.
[17]Bloch H., “The inventor of the stethoscope: Rene Laennec”, J Fam Pract, 37:191, 1993.
[18]Hasse Melbye, “Auscultation of the lungs, still a useful examination? “ Tidsskr Nor Laegeforen, 121: 451-4, 2001.
[19]Schuttler, F.; Penzel, T.; von Wichert, P., “Digital recording and computer-based analysis of lung sounds”, Annual International Conference of the IEEE 1996 Page(s):2301 - 2302 vol.
[20]Charbonneau, G. ;Racineux, J.; Sudraud, M.; Tuchais, E. “Digital processing techniques of breath sounds for objective assistance of asthm diagnosis”, Acoustics, Speech, and Signal Processing, IEEE International Conference on ICASSP '82.ICASSP '82. 7: 736- 738.
[21]X. Huang, A. Acero and H. W. Hon, Spoken Language Processing, Prentice Hall, 2001.
[22]Charleston-Villalosbos, S.; Gonzalez-Camarena, R.; Chi-Lem, G.; Aljama-Corrales, T.; “Crackle Sounds Analysis By Eprcl Mode Decomposition”. Engineering in Medicine and Biology Magazine, IEEE Volume 26: Issue 1, 2007 Page(s):40 – 47.
[23]Taplidou, S.A.; Hadjileontiadis, L.J.; Penzel, T.; Gross, V.; Panas, S.M., “WED: An efficient wheezing-episode detector based on breath sounds spectrogram analysis”, Engineering in Medicine and Biology Society, 2003. Proceedings of the 25th Annual International Conference of the IEEE Volume 3, 17-21 Sept. 2003 Page(s):2531 - 2534 Vol.3.
[24]Du, M.; Lam, F.K.; Chan, F.H.Y.; Sun, J., “Multi-resolution decomposition applied to crackle detection Systems”,Man, and Cybernetics, 1997. Computational Cybernetics and Simulation, 1997 IEEE International Conference on Volume 5, 12-15 Oct. 1997 Page(s):4223 - 4226 vol.5.
[25]Hadjileontiadis, L.J.; Panas, S.M.; “Separation of discontinuous adventitious sounds from vesicular sounds using a wavelet-based filter”, Biomedical Engineering, IEEE Transactions on Volume 44, Issue 12, Dec. 1997 Page(s):1269 – 1281.
[26]Classification of the most common adventitious lung sound as recommended by the International Lung Sound Association in 1976 (2).
[27]盧鵬任;盧明智,感測器應用與線路分析,全華科技圖書股份有限公司,1996。
[28]盧明智;黃敏祥,OP Amp 應用 + 實驗模擬,全華科技圖書股份有限公司,1995。
[29]Leontios J. Hadjileontiadis and Stavros M. Panas,“Adaptive Reduction of Heart Sounds from Lung Sounds Using Fourth-Order Statistics”, IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING Volume 44, Issue 7, July 1997 Page(s):642 – 648.
[30]盧正興;陳昭綾,“8051單晶片微電腦應用”,高立圖書有限公司,2002。
[31]劉漢君;林永裁;鄭美珠,“微處理機實習”,松岡電腦圖書資料股份有限公司,1999。
[32]鄭宗慶,”精通8051”, 全華科技圖書股份有限公司,1996。
[33]吳金役;郭庭吉,”8051 C語言應用與實習”, 松岡電腦圖書資料股份有限公司,1995。
[34]蒙以正,“數位訊號處理應用MATLAB”,旗標出版股份有限公司,2004。
[35]羅華強,“訊號處理MATLAB的應用”,全華科技圖書股份有限公司,2003。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔