跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.248) 您好!臺灣時間:2023/01/28 13:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳穎杰
研究生(外文):Chen Ying-Jie
論文名稱:生物軟組織黏彈性力學模型之探討與應用
論文名稱(外文):Investigation and applications of viscoelastic model for bio-soft tissue.
指導教授:劉乃上
學位類別:碩士
校院名稱:南台科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:68
中文關鍵詞:軟組織黏彈性分數微分
相關次數:
  • 被引用被引用:0
  • 點閱點閱:583
  • 評分評分:
  • 下載下載:72
  • 收藏至我的研究室書目清單書目收藏:1
人體中由主要功能不在承受力量的軟組織所構成的器官如腦、腎臟及肝臟等器官在身體受到外力衝擊時非常可能受到傷害,然而這些軟組織的力學性質研究長期以來並沒有受到像承受力量的軟組織如軟骨、肌腱及韌帶等的力學性質研究一樣受到重視。隨著汽車安全規範要求的提高,使得對於身體各部份組織力學性質的研究受到更多的重視,身體組織精確力學模型的建立是設計製造有效預防傷害設備及精確模擬傷害不可缺少的要件。除此之外,自動手術工具及機器人的開發及外科醫生訓練用的虛擬實境手術訓練系統的發展都要有對於相關生物組織機械性質相當的了解並建立適當的力學模型之後才能順利進行。

故本實驗主要目的為建立不同的黏彈性模型並比較其優劣,提供我們對此類軟組織黏彈性模型有更多的瞭解。藉由量測豬腎皮層組織在單軸向拉伸實驗所得的資料利用最小平方法擬合三種不同黏彈性模型(三參數線性黏彈性模型、五參數Wiechert模型、三參數分數微分模型),將擬合曲線與原實驗曲線相比較。顯示出豬腎皮層組織在單軸向拉伸實驗中,三參數分數微分模型與五參數Wiechert模型都會比三參數線性黏彈性模型有更好的曲線擬合結果,而三參數分數微分模型會比五參數Wiechert模型更適合用來擬合長時間之實驗數據。

在應用部份,利用三參數線性黏彈性模型本構方程式係數(a,b,c)來估算豬腎皮層試片在單裂縫拉伸實驗中黏彈性功的損失。在本研究中經由一維線性黏彈性功的計算和二維/三維有限元素分析(ABAQUS)模擬兩個方法來探討結果。
Soft tissues such as brain, liver, kidney, etc. are very vulnerable to trauma during car crash and other impact consequences, but mechanical properties of these soft tissues, which do not bear force, have not been investigated as completely as mechanical properties of load-bearing soft tissues such as ligament, tendon, articular cartilage, etc. The growing requirements of automotive safety regulation need examination of the mechanical properties of these soft tissues. The accurate constitutive models of these soft tissues are the perquisites for injury simulation and designing methods for injury prevention. Furthermore, recent developments in surgical robotic technology as well as advances in virtual reality techniques necessitate closer investigation of the mechanical properties of these tissues. The development of these technology and techniques, for these soft tissues, is highly dependent on the knowledge of mechanical properties of these tissues and the availability of proper constitutive models of these tissues.

In this study, the mechanical properties of pig kidney cortex under uniaxial tensile loads were characterized. The experimental data were obtained at three different loading displacement rates (0.08, 0.2 and 0.4 mm/sec), and they were fitted into three different viscoelastic constitutive models. It can be seen that 3-parameter fractional derivative model and 5-parameter Wiechert model can better fit the experimental results than 3-parameter linear viscoelastic model does. Furthermore, 3-parameter fractional derivative model is more suitable to fit the long term experimental data than 5-parameter Wiechert model. The constitutive models were used to calculate the viscoelastic work dissipation of pig kidney cortex specimen during single notched tensile tests via 1-D linear viscoelastic estimation and 2-D/3-D finite element simulations.
目次
摘要 1
英文摘要 2
誌謝 3
目次 4
表目錄 6
圖目錄 7
第一章 緒論 9
1-1 研究背景 9
1-2 研究動機 10
1-3 文獻回顧 11
1-4 研究方法 11
1-5 本文架構 12
第二章 軟組織材料數學模型之建立 13
2-1 軟組織材料的性質 13
2-2 黏彈性材料的模型建立 13
2-2.1 三參數線性黏彈性模型 14
2-2.2 五參數線性黏彈性模型(Wiechert model) 17
2-2.3 三參數分數微分模型 19
2.3 不同數學模型之參數探討 23
2-3.1 三參數線性黏彈性模型 23
2-3.2 五參數線性黏彈性模型(Wiechert model) 24
2-3.3 三參數分數微分模型 25
第三章 實驗步驟 27
3-1 實驗設備 27
3-2 實驗方法 28
3-3 最小平方法 30
第四章 實驗結果分析 33
4-1 YZ平面拉伸結果分析 33
4-2 XZ平面拉伸結果分析 39
4-3 XY平面拉伸結果分析 45
4-4 三個平面拉伸結果之比較 51
4-5 應用 55
4-5.1 如何估算1-D破壞試驗黏彈性功的損失 55
4-5.2 有限元素法之分析 57
4-5.3 模擬結果 57
第五章 結論與未來展望 64
參考文獻 66
參考文獻
[1] Ateshian, G.A., Warden, W.H., Kim, J.J., Grelsamer, R.P., Mow, V.C., 1997 , “FINITE DEFORMATION BIPHASIC MATERIAL PROPERTIES OF BOVINE ARTICULAR CARTILAGE FORM CONFINED COMPRESSION EXPERIMENTS", Journal of Biomechanics Vol.30, pp.1157-1164.

[2] Andr´e Schmidt, Lothar Gaul, 2002, “FE implementation of viscoelastic constitutive stress-strain relations involving fractional time derivatives", Constitutive Models for Rubber II, A.A. Balkema Publishers, Tokyo, pp. 79-89.

[3] Brendan E.Koop.Jack L. Lewis, 2003, “A model of fracture testing of soft viscoelastic", Journal of biomechanics, vol. 36, pp. 605-608.

[4] David Broek, 1989, “The practical use of fracture mechanics"

[5] Farshad, M., Barbezat, M., Fleler, P., Schmidlin, F., Grabber, P., Niederer, P., 1999,
“Material characterization of the pig kidney in relation with the biomechanical analysis ofrenal trauma", Journal of Biomechanics Vol.32, pp.417-425.

[6] Gefen, A., Margulies, S.S., 2004, “Are in vivo and in situ brain tissues mechanically similar", Journal of Biomechanics, Vol.37, pp.1339-1352.

[7] Huang, C-H., Mow. VC., Ateshian, GA., 2001,“The role of flow-independent viscoelasticity in the biphasic tensile and compressive responses of articular cartilage", Journal Biomech. English, Vol.123, pp.410-417.

[8] John D. Ferry, 1980, “Viscoelastic properties of polymers", John Wiley & Sons; 3 edition.

[9] James M. Gere, 2002, “Mechanics of materials", PWS Pub. Co.

[10] Koop B. E. and Lewis J. L., 2003, “A model of fracture testing of soft viscoelastic tissues", Journal of Biomechanics, Vol. 36, pp.605-608

[11] Anderson J., Li Z., Goubel F., 2002, “Models of skeletal muscle to explain the increase in passive stiffness indesmin knockout muscle",Journal of Biomechanics Vol.35, pp.1315–1324

[12] Miller K. and Chinzei K., 1997, “Constitutive modeling of brain tissue:Experiment and theory", Journal of Biomechanics, Vol.30, pp.1115-1121.

[13] Miller K., 1999, “Constitutive model of brain tissue suitable for finite element analysis of surgical procedures", Journal of Biomechanics, Vol.32, pp.531-537

[14] Miller K., 2000, “Constitutive modeling of abdominal organs", Journal of Biomechanics, Vol.33, pp.367-373.

[15] Miller K., Chinzei K., Orssengo G.., Bednarz P., 2000, “Mechanical properties of brain tissue in-vivo: experiment and computer simulation", Journal of Biomechanics, Vol.33, pp.1369-1376.

[16] Miller K., 2001, “How to test very soft biological tissues in extension?", Journal of Biomechanics, Vol.34, pp.651-657.

[17] Miller K. and Chinzei Y., 2002, “Mechanical properties of brain tissue in tension", Journal of Biomechanics, Vol. 35, pp.83-490.

[18] Miller K., 2005, “Method of testing very soft biological tissues in compression", Journal of Biomechanics, Vol.38, pp.153-158.

[19] Mow V. C., Kuei S. C. and Lai W. M., 1980, “Biphasic creep and stress relaxation of articular cartilage in compression theory and experiments", Journal of biomechanics English, Vol.102, pp.73-84.

[20] Shuck L.Z., Advani S. H., 1972, “Rheological response of human brain tissue in shear", ASME Journal of Basic Engineering, Vol.94, pp.905-911.

[21] Vannah W., Childress M., D. S., 1996, “Indentor tests and finite element modeling of bulk muscular tissue in vivo", Journal of Rehabilitation Research and Development, Vol.33, pp.239-252.

[22] Tie Hu, Jaydev P. Desai, 2004, “Soft-tissue material properties under large deformation: Strain rate effect", Proceedings of the 26th Annual International Conference of the IEEE EMBS.

[23] Snedeker J. G., Niederer P., Schmidlin F. R., Farshad M., Demetropoulos C. K., Lee J.B., Yang K.H., 2005, “Strain-rate dependent material properties of the porcine and human kidney capsule", Journal of Biomechanics Vol.38, pp.1011–1021

[24] Tillier Y., Paccini A., Durand-Reville M., Bay F., Chenot J.-L., 2003, “Three dimensional finite element modeling for soft tissues surgery", International Congress Series 1256, pp.349–355

[25] David Roylance, 2001, “ENGINEERING VISCOELASTICITY".

[26] 林建中, 民90, “高分子材料科學", 文京出版機構, pp.55-66

[27] 張家禎, 民75, “聚合物黏彈性概論"

[28] 郭灯琳, 民94, “猪腎皮質組織破壞韌性之量測", 南台科技大學機械工程系碩士學位論文
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 洪錚蓉(2002)。藍色憂鬱風在校園,諮商與輔導,204,1~2。
2. 胡海國(2002)。精神分裂病之社區流行病學,當代醫學,29(9),717~727。
3. 邱啟潤、許淑敏、吳瓊滿(2001)。主要照顧者負荷、壓力與因應之國內研究文獻回顧,醫護科技學刊,4(4),273~290。
4. 周桂如(2002)。兒童與青少年憂鬱症,護理雜誌,49(3),16-23。
5. 徐亞瑛、張媚、楊玉玟、黃久美(1992)。都市型及鄉村型社區中居家殘病老人照顧者之附和及其相關影響因素,護理雜誌,39(3),99~106。
6. 施青珍(2003),走過心靈幽谷淺談青少年心理壓力,學生輔導,84,49~55。
7. 林美娜、邱啟潤(1995)。居家中風老人之家庭照顧品質,護理研究,3(2),138~147。
8. 林秀純、徐亞瑛、姚開屏、吳淑瓊(1999)。台灣北部地區失能老人家庭照顧品質及相關因素之探討,護理研究,7(1),15~28。
9. 宋麗玉(1998)。精神病患照顧者之憂鬱程度與其相關因素探討。公共衛生,25(3),181~196。
10. 宋麗玉(1999)。精神病患照顧者之探究:照顧負荷之程度與其相關因素,中華心理衛生學刊,12(1),1~30。
11. 吳就君(1995)。精神病患家庭照護者之負荷研究:誇國文化比較,中華心理衛生學刊,8(1),37~52。
12. 沈詠萱、詹其峰、呂碧鴻(2003)。青少年憂鬱症,基層醫學,18(4),84~90。
13. 沈志仁、張素凰(1993)精神病患主要照顧家屬的需要及其相關因素,中華心理衛生學刊,6(1),49~64。
14. 李淑霞、吳淑瓊(1998)。家庭照顧者負荷與憂鬱之影響因素,護理研究,6(1),57~68。
15. 李姿瑩、蔡芸芳、楊美賞(2000)。花蓮地區原住民與非原住民精神分裂病患主要照顧者需求及其相關因素探討,慈濟醫學,12,247~257。