跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/07 13:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李佶峰
研究生(外文):Chi-Feng Li
論文名稱:創新長行程雙雷射聚焦讀取頭光學尺系統之研製
論文名稱(外文):Development of innovation large range optical encoder system using two laser focus probes
指導教授:朱志良朱志良引用關係
指導教授(外文):Chih-Liang Chu
學位類別:碩士
校院名稱:南台科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:63
中文關鍵詞:雙雷射聚焦讀頭光學尺DVD光學讀取頭光柵尺
外文關鍵詞:Optical encoderDVD pick-up headGrating
相關次數:
  • 被引用被引用:3
  • 點閱點閱:661
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要目的是在發展ㄧ創新光學尺系統,利用市售光碟機(DVD-ROM)內之DVD光學讀取頭(DVD pick-up head),結合光柵尺(Grating)發展一創新之奈米級長行程雙雷射聚焦讀頭光學尺(Optical encoder)系統。採用兩個光學讀取頭,且兩個光學讀取頭共用同一分光鏡(Beam splitter)與同一聚焦物鏡(Objective lens),於搭配光路的設計,可使兩個光學讀取頭之光束打入同一聚焦物鏡,藉由調整兩個DVD光學讀取頭的位置與角度,使聚焦物鏡聚焦的兩相近聚焦光點的距離相等於四分之ㄧ光柵尺間距,當光柵尺移動時,可直接量測光柵尺的表面輪廓變化,以獲得一組正交的弦波訊號,繼而利用訊號四分割與細分割處理,計算出光柵尺之移動方向與移動量。所研製的奈米級長行程雙雷射聚焦讀頭光學尺於1mm光柵的測試行程範圍,其定位誤差為19nm,解析度小於3nm (±3σ)。
研究中再以搭配物鏡的數值孔徑與尺條間距的關係,選擇ㄧ適當的市售平凸透鏡,使聚焦光點的直徑與尺條的間距相近,並使用相同於奈米級長行程雙雷射聚焦讀頭裝置的光路設計,如此將可藉由直接量測尺條的表面輪廓變化,以獲得一組正交弦波訊號,繼而利用訊號四分割與細分割處理,計算出尺條之移動方向與移動量,研製出一實用性長行程雙雷射聚焦讀頭光學尺。所研製的實用性長行程雙雷射聚焦讀頭光學尺於1cm光柵的測試行程範圍,其定位誤差為0.2μm,解析度小於0.08μm (±3σ)。
This study develops an innovative nanoscale optical encoder based on two commercially available DVD optical pick-up heads and a grating. Two DVD optical pick-up heads sharing single beam splitter and single objective lens are used so that the laser beam from the two DVD optical pick-up heads can be emitted on the objective lens, so that two laser beams can focus on the surface of the grating to form two laser spots. By adjusting the positions and angles of the two DVD optical pick-up heads, the relative distance of the two laser spots can be equivalent to one quarter of the grating pitch. When the grating moves, the surface profile of the grating can be measure directly, in order to obtain the two quadrature sinusoidal signals. Then by counting the zero crossing of these two quadrature sinusoidal signals and calculating the interpolation value of these two quadrature sinusoidal signals, the moving direction and moving displacement value of the grating can be obtained. The experiments have verified that the optical encoder developed by this study has measurement resolution less than 3 nm (±3σ), and measurement accuracy of 19 nm under the measurement range of 1 mm.
Based on the relationship between the numerical aperture (NA) of the objective lens and scale pitch, this study chooses a suitable Plano-convex lenses available on the market, so as to approximate the diameter of the focusing spots to scale pitch. Also, by using the optical path of an optical encoder similar to the nanoscale, the changes in the surface profile of the scale can be measured directly, so as to obtain the two quadrature sinusoidal signals. By counting the zero crossing of these two quadrature sinusoidal signals and calculating the interpolation value of these two quadrature sinusoidal signals, the moving direction and moving displacement value of the scale can be obtained. The experiments have verified that the optical encoder developed by this study has measurement resolution less than 0.08μm (±3σ), and measurement accuracy of0.2μm under the measurement range of 1cm.
摘要 iv
英文摘要 v
誌謝 vii
目次 viii
表目錄 x
圖目錄 xi
第一章 緒論 1
1.1 研究動機與目的 1
1.2 相關文獻回顧 2
1.2.1 光學尺 2
1.2.2 光學量測探頭 3
1.3 研究方法與內容概要 4
第二章 光學尺原理與光學量測探頭 6
2.1 光學尺基礎原理 6
2.2 雷射聚焦探頭系統簡介 7
2.2.1 讀取頭關鍵元件介紹 8
2.2.2 讀取頭應用原理與光學聚焦方式探討 12
2.2.3 S曲線的量測架設 15
2.2.4 S曲線實際量測與評估 16
第三章 奈米級長行程雙雷射聚焦讀頭光學尺 19
3.1 奈米級雙雷射聚焦讀頭光學尺之光路設計 19
3.2 奈米級雙雷射聚焦讀頭光學尺之光路分析 21
3.3 奈米級雙雷射聚焦讀頭光學尺之設計製作與組裝 22
3.4 電子細分割 25
第四章 實用性長行程雙雷射聚焦讀頭光學尺 28
4.1 實用性雙雷射聚焦讀頭光學尺之光路設計 28
4.2 平凸透鏡之光點大小分析 30
4.3 實用性雙雷射聚焦讀頭光學尺之光路分析 31
4.4 實用性雙雷射聚焦讀頭光學尺之設計製作與組裝 32
第五章 實驗架設與測試結果 35
5.1 光柵架設偏擺之誤差分析 35
5.2 奈米級雙雷射聚焦讀頭光學尺之實驗架設與量測結果 39
5.2.1 旋轉DVD讀取頭量測光柵尺表面的輪廓 40
5.2.2 奈米級雙雷射聚焦讀頭光學尺之靜態解析度量測 41
5.2.3 奈米級雙雷射聚焦讀頭光學尺之定位誤差量測 42
5.3 以CD光碟片取代光柵尺的量測結果 47
5.4 實用性雙雷射聚焦讀頭光學尺之實驗架設與量測結果 48
5.4.1 實用性雙雷射聚焦讀頭光學尺之光點大小量測 49
5.4.2 實用性雙雷射聚焦讀頭光學尺之靜態解析度量測 51
5.4.3 實用性雙雷射聚焦讀頭光學尺之定位誤差量測 52
第六章 結論與未來展望 56
6.1 結論 56
6.2 未來展望 57
參考文獻 58
附錄A 61
[1]Chu C. L. and Fan S. H., “A novel long-travel piezoelectric-driven linear nanopositioning stage,” Precis. Eng., Vol. 30, 2006, pp. 85-95.
[2]“ZMI 4000 Series Measurement Board Operation Manual (OMP-0460L),” Zygo Corporation, 2004.
[3]Bobroff N., “Recent advances in displacement measuring interferometry,” Meas. Sci. Technol., Vol. 4, 1993, pp. 907-926.
[4]Dobosz M., “Application of a divergent laser beam in a grating interferometer for high-resolution displacement measurements,” Opt. Eng., Vol. 33, No. 3, 1994, pp. 897-901.
[5]Lin J. D., Kuo H. B., “Development of a new optical scale system by the diffractive phase interference method,” Meas. Sci. Technol., Vol. 6, 1995, pp. 293-296.
[6]Heilmann R. K., Chen C. G., Konkola P. T., Schattenburg M. L., “Dimensional metrology for nanometre-scale science and engineering: towards sub-nanometre accurate encoders,” Nanotechnology, Vol. 15, 2004, pp. S504-S511.
[7]Fan K. C., Liu Y. S., Chen Y. J., Cheng F., “A linear diffraction grating interferometer with high accuracy,” Proc. of SPIE, Vol. 6280, No. 628008, 2006, pp. 1-6.
[8]Sawada R., Higurashi E., Ito T., Ohguchi O., Tsubamoto M., “Monolithic-integrated microlaser encoder,” Appl. Opt., Vol. 38, No. 33, 1999, pp. 6866-6872.
[9]Higurashi E., Sawada R., “Micro-encoder based on higher-order diffracted light interference,” J. Micromech. Microeng., Vol. 15, 2005, pp. 1459-1465.
[10]Dobosz M., “New style probe with interferometric transducer for surface roughness and form profiling,” Opt. Eng., Vol. 33, No. 3, 1994, pp. 902-907.
[11]蘇宗德,超精密繞射干涉接觸式探頭及系統之研製,國立台灣大學機械工程學研究所碩士論文,1999。
[12]BS78 Laserscale™, SONY Precision Technology Inc.
[13]Fan K. C., Su C. D., Mou J. I., “Error analysis for a diffraction grating interferometric stylus probing system,” Meas. Sci. Technol., Vol. 12, 2001, pp. 482-490.
[14]Heydemann P. L. M., “Determination and correction of quadrature correction of fringe measurement errors in interferometers,” Appl. Opt., Vol. 20, No. 19, 1981, pp. 3382-3384.
[15]Yacoot A., Cross N., “Measurement of picometre non-linearity in an optical grating encoder using x-ray interferometry,” Meas. Sci. Technol., Vol. 14, 2003, pp. 148-152.
[16]Huang Y., Menq C. H., “Design and development of a large range linear encoder with subnanometer resolution,” Rev. Sci. Instrum., Vol. 77, No. 105104, 2006, pp. 1-11.
[17]Aketagawa M., Takada K., Rerkkumsup P., Togawa Y., Honda H., “Real-time atomic encoder using scanning tunneling microscope and regular crystalline surface,”Meas. Sci. Technol., Vol. 17, 2006, pp. 513-518.
[18]Benschop J., Rosmalen G. V., “Confocal compact scanning optical microscope based on compact disc technology,” Applied Optics, Vol. 30, No. 10, 1991, pp. 1179-1184.
[19]Quercioli F., Mannoni A., Tiribilli B., “Correlation optical velocimetry with a compact disk pickup,” Applied Optics, Vol. 36, No. 25, 1997, pp. 6372-6375.
[20]Zhang J. H., Cai L. L., “An autofocusing measurement system with a piezoelectric translator,” IEEE/ASME Transactions on Mechatronics, Vol. 2, No. 3, 1997, pp. 213-216.
[21]Fan K. C., Chu C. L., Mou J. I., “Development of a low-cost autofocusing probe for profile measurement,” Measurement Science and Technology, Vol. 12, 2001, pp. 2137-2146.
[22]Chu C. L., Fan K. C., Chen Y. J., “A compensation method for the hysteresis error of DVD VCM,” Measurement Science and Technology, Vol. 15, 2004, pp. 734-740.
[23]Sony semiconductor product list 2003, Sony Co., Photo Device KHM-310AAA 2003.
[24]藍啟峰,以FPGA 發展電子細分割及其於光柵干涉儀之應用,國立台灣大學機械工程研究所碩士論文,2001。
[25]傅毓芬,實用性相位信號編碼與解碼技術的研究,師大書苑,1997。
[26]蔣向前,曲面表面形貌檢測理論與方法的研究,華中理工大學博士論文, 1995。
[27]Li T., Fang Z., Wang M., “Small displacement measurement by using feed-back laser interferometer and computer subdivision,” Acta Metallurgica Sinica, Vol. 16, No. 3, 1995, pp. 196-199.
[28]Cui J., Li H., Chen Q., “New digital subdividing and rester-sensing technique for Moire fringe of grating,” Optical Technique, Vol. 26, No. 4, 2000, pp. 194-296.
[29]林勤喻,超精密雷射聚焦探頭之研製,國立台灣大學機械工程學研究所碩士論文,1998。
[30]Firester A. H., Heller M. E., Sheng P., “Knife-edge scanning measurements of subwavelength focused light beams,” Appl. Opt., Vol. 16 , 1977, pp. 1971-4.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 王春展(1997)。專家與生手間問題解決能力的差異及其在教學上的啟示。教育研究資訊,5(2),80-92。
2. 王瑞慶(2002)。著名數學解題歷程理論之比較分析。屏師科學教育,16,39-48。
3. 朱達仁(2006)。溪流複合式指標評估模式之建構。特有生物研究,8(1),35-56。
4. 呂金燮(2000)。資優兒童問題解決能力實作評量之建構研究。特殊教育研究學刊,19,279-308。
5. 呂金燮、陳偉仁、黃楷茹、黃珮琇、陳靜芝(2005)。「問題本位學習」中資優兒童創造性問題解決能力的展現。特殊教育研究學刊,28,239-258。
6. 汪靜明(1995)。社會環境教育之推動與落實。教育資料集刊,20,213-235。
7. 邱貴發(1994)。電腦輔助學習的理念與發展方向。教學科技與媒體,2,15 - 22。
8. 徐新逸(1998)。情境學習對教學革新之回應。研習資訊,15(1),16-24。
9. 梁朝雲、鄭時雨、楊郁芬(2006)。電子遊戲玩性因素與數位遊戲學習參與性和持續性之關連研究。教學科技與媒體,76,20-41。
10. 曾玉慧、梁朝雲(2003)。育樂多媒體的興起與發展。視聽教育雙月刊,44(6),2-14。
11. 黃武元、葉道明、楊敦州(2004)。利用多媒體電子黑板促進課後學習之研究-以國中數學科為例。研習資訊,21(3),19-40。
12. 黃茂在、陳文典(2004)。「問題解決」的能力。科學教育月刊,273,21-41。
13. 黃筱雯、蔡家姍(2004)。國中學生語言能力、閱讀理解能力及寫作表現三者之關係研究:以桃園縣為例。教育科學期刊,4(2),118-160。
14. 楊文金(2000)。同儕友伴關係對六年級學生科學問題組對討論的影響分析。科學教育學刊,8(2),123-140。
15. 楊家興(1995)。情境教學理論與超媒體學習環境。教學科技與媒體,22,40-48。