跳到主要內容

臺灣博碩士論文加值系統

(44.200.94.150) 您好!臺灣時間:2024/10/12 03:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃伯勤
研究生(外文):Huang bo-chin
論文名稱:以脈衝電泳沉積法製備奈米碳管場發射顯示器之研究
論文名稱(外文):Fabrication of Carbon Nanotube Field Emission Display by Pulsed Current Electrophoretic Deposition
指導教授:王聖璋
學位類別:碩士
校院名稱:南台科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:96
語文別:中文
中文關鍵詞:奈米碳管聚乙烯亞胺電泳沉積法脈衝電位場發射顯示器
外文關鍵詞:Carbon nanotube(CNT)Polyethyleneimine(PEI)Disperbyk-184Electrophoretic DepositionPulsed CurrentField Emission Display
相關次數:
  • 被引用被引用:0
  • 點閱點閱:366
  • 評分評分:
  • 下載下載:91
  • 收藏至我的研究室書目清單書目收藏:1
本研究為使用電泳沉積的方式製備奈米碳管場發射陰極。主要分為三大部分,第一部份為電泳漿體的製備與電泳性質的分析。藉由添加兩種陽離子型分散劑聚乙烯亞胺 (Polyethyleneimine, PEI) 與Disperbyk-184來增加粒子間的表面電位。使用乙醇與異丙醇當作承載溶液,並添加硝酸鎂來增加漿體的導電度。實驗中使用Zeta-potential、粒徑分析儀、黏度計測量其漿體性質。第二部份為電泳時電泳電壓、電流與時間關係的觀察。實驗則使用電化學恆電位儀來測量定電壓實驗與脈衝電位實驗。第三部份為觀察場發射實驗的結果與特性來添加適量的銀粉與玻璃粉粉末,藉由J-E與F-N曲線的觀察、光斑的密緻度、場發電流的穩定性來判斷添加銀、二氧化矽之後場發射的效果。
結果顯示,同時添加兩種陽離子型分散劑在粒徑分析、Zeta potential上都有很好的結果。從黏度計測量的結果顯示,PEI的添加重量跟奈米碳管比例為1.5:1的時候電泳效果最好。由掃描式電子顯微鏡觀察,沉積的鍍膜都有不錯的均勻度。
由電泳的電流與時間變化來看,經過一定時間電流會趨於一斜率遞減,符合法拉第定律,沉積重量與時間成正比關係,從沉積重量與時間關係圖可以驗證之。而藉由脈衝電位沉積的鍍膜可克服電泳後邊緣效應的問題,達到更好的表面均勻性。由J-E與F-N plot可以觀察出,同時添加銀與二氧化矽的場發射效果最好,起始電場為1.25 V/μm,臨界值為2.5 V/μm,光斑較為細緻穩定。
The research is to prepare the CNT field emission cathode by electrophoretic deposition. The study is divided into three major parts mainly. The first part is the preparation of the electrophoretic liquid and the analysis of electrophoretic nature. By adding two kinds of cationic surfactant Polyethyleneimine (PEI) and Disperbyk-184 to increase the superficial electric potential among particle. Using ethanol and isopropyl alcohol to regard as bearing solution, and also adds the nitric acid magnesium to increase its electric conduction. Using Zeta-potential, particle size analyzer, viscosity meter to count and measure the nature of the solution in the experiment. The second part is observation of the voltage of electrophoresis, relation between current and time of the electrophoresis. The experiment uses the electrochemical workstation to do those potentiostatic experiment and potential square experiment.The third part is, observing for the result of the field emission experiment and its characteristic to add silver powder and dioxide silicon powder. Judging by J-E and F-N curve observation, dense degree of facula, and field emission’s stability that the result after adds silver and dioxide silicon.
The results show that simultaneously increases two kinds of cationic dispersing agent in the particle size analysis, and on the Zeta potential both would be well down. Counts the survey from the viscosity meter to demonstrate that, the effect of electrophoresis is the best when the ratio of PEI and carbon natotube addition is 1.5:1. Observing from the Scanning Electron Microscopy, the morphology of the deposited layer is smooth.
The analysis by the change of current and time of the electrophoresis, current will tend towards one slope and decrease progressively through certain time. According with Faraday's law, the relation is in direct proportion to time and deposited weight. It could verify from the graph of deposited weight and time. Using potential square experiment is effective to deposit a smooth layer.Observing by J-E and F-N plot, the best result of adding silver and dioxide silicon at the same time. The electric field Eto is 1.25 V/um, and the marginal value is 2.5 V/um, will be a careful stability of facula in this experiment.
目錄
摘要....................................................Ⅰ
Abstract................................................Ⅱ
目錄....................................................Ⅳ
圖目錄..................................................Ⅶ
表目錄..................................................Ⅹ
相關方程式..............................................ⅩⅠ
第一章 緒論.............................................1
1-1 前言.............................................1
1-2 研究目的..........................................4
第二章 文獻回顧..........................................7
2-1 奈米碳管..............................................7
2-1-1 奈米碳管的發現與結構..................................7
2-1-2 奈米碳管的特性與應用..................................13
2-1-3奈米碳管的合成方式.....................................15
2-2 漿體的分散.............................................20
2-2-1 ζ-電位(Zeta potential)與膠體溶液的穩定度...............20
2-2-2 DLVO理論.............................................22
2-2-3 界面活性劑的分類.......................................25
2-2-3-1聚乙烯亞胺 (Poly ethyleneimine, PEI)………………….26
2-2-3-2 Disperbyk-184……………………………………………....26
2-3 場發射特性與F-N方程式..........................................................29
2-4 奈米碳管場發射源製造技術….................................34
2-5 電泳沉積法...............................................37
第三章 實驗步驟.............................................38
3-1 實驗步驟與流程............................................38
3-2 實驗儀器.................................................40
3-3 實驗材料…...............................................40
3-4 電泳漿體調配..............................................41
3-4-1 比較界面活性劑添加量對分散效果與電泳的影響..................41
3-4-2 比較添加銀粉與玻璃粉對場發射特性的影響......................41
3-5 漿體性質分析(ζ-potential與粒徑大小).........................43
3-6 電泳沉積製備場發射陰極......................................43
3-6-1 定電位實驗...............................................43
3-6-2 脈衝電位實驗.............................................43
3-7 最佳熱處理溫度分析..........................................46
3-8 場發射特性分析…………….....................................46
第四章 結果與討論.............................................48
4-1 奈米碳管、銀粉與玻璃粉之顯微結構..............................48
4-2 電泳漿體性質分析............................................53
4-2-1 ζ-potential與粒徑量測....................................53
4-2-1 黏度值與電泳速度之量測....................................54
4-3 定電位沉積實驗.............................................57
4-3-1 沉積時間與沉積重量之關係…………............................57
4-3-2 奈米碳管、銀粉與玻璃粉之電泳I-t curve….....................59
4-3-3 不同PEI添加比例對鍍膜表面的影響分析.........................62
4-4 鍍層熱處理溫度分析……………………………………………………65
4-5熱處理後試片表面形態分析......................................68

4-6 脈衝沉積實驗...............................................70
4-6-1 改變脈衝電位參數tp對鍍層型態之影響..........................70
4-6-2改變脈衝電位參數Vp對鍍層型態之影響...........................75
4-6-3 脈衝電位與定電位之比較.....................................80
4-6-4 脈衝電位鍍膜之顯微結構.....................................82
4-7 奈米碳管場發射性質分析.............................................................83
4-7-1 熱處理對場發射性質的影響....................................83
4-7-2 脈衝電位對場發射特性之影響..................................86
4-7-3 添加銀粉與玻璃粉對場發射特性影響之分析........................89
第五章 結論....................................................97
參考文獻
[1]K. Yamamoto, S. Akita and Y. Nakayama, J. Phys. D, Appl. Phys. 31, L34-L36, (1998).
[2]Y. Nakayama, S. Akita, Synthenic Metals, 117, 207-210, (2001).
[3]M. S. Kumar, S. H. Lee, T. Y. Kim, S. M. Song, J. W. Yang, K. S. Nahm, E. K. Suh, Solid-State Electronics, 47, 2075-2080, (2003).
[4]D. A. Kurnosov, A. S. Baturin, A. S. Bugaev, K. N. Nikolski, R. G. Tcheso, E. P. Sheshin, Appl. Surf. Sci., 215, 232-236, (2003).
[5]W. B. Choi, Y. W. Jin, H. Y. Kim, S. J. Lee, M. J. Yun, J. H. Kang, Y. S. Choi, N. S. Park, N. S. Lee, and J. M. Kim Phys, 1547-1549(2001).
[6]S. J. Oh. Y. Cheng, J. Zhang, H. Shimoda, and O. Zhou, Appl. Phys. Lett., 82, 2521, (2003).
[7]W. B. Choi et al, Appl. Phys. Lett., 78, 1547, 2001.
[8]Jing Sun, Lian Gao, Carbon 41 (2003) 16-063-1068.
[9]邵建榮,”多孔陶瓷基材之水系電泳沉積研究”,國立東華大學材料科學與工程研究所碩士論文,民國92年7月。
[10]Aldo R. Boccaccini, Johann Cho, Judith A. Roether, Boris J. C. Thomas, E. Jane Minay, Milo S. P. Shaffer, “Electrophoretic deposition of carbon nanotubes” Carbon 44 (2006) 3149–3160.
[11]S Iijima , Nature, 1991 50-354.
[12]成會明編著、張勁燕校訂 “奈米碳管” (2004) 2.
[13]工研院材料所, 材料世界網: http://www.materialsnet.com.tw.
[14]T W Ebbesen, Ann Rev Mater Sci 1994 24 p235.
[15]Rice University, “Rick Smalley's Group Home Page-Image Gallery”.
[16]S Iijima, “Helical microtubules of graphitic carbon” Nature 354 (1991) 56.
[17]G. Overeny, W Zhong and D Tomanek, Z Phys D 27 (1993) 6-93.
[18]朱屯、王福明、王羽東,國外奈米材料進展與應用,化學工業出版社,6~8,2002.
[19]G. Overeny, W Zhong and D Tomanek, Z Phys D 27 (1993) 6-93.
[20]A G. Rinzler, J H Hafner, P Nikolaev, L Lou, S G Kim, D Tom´anek, P Nordlander, Colbert, D T and R E Smalley, Science 269, 1550 (1995).
[21]李元堯, 化工技術, 第140~159 頁, 民國九十二年三月.
[22]W.A. de Heer, A. Cha. Telain, and D. Ugarte, Science, 270, 1179 (1996).
[23]A.G Rinzler, J. H. Hafner, P. Nikolaev, L. Lou, S. G. Kim, D. Tom’anek, P. Nordlander, D. T. Colbert and R.E. Smalley, Science 269, 1550 (1995).
[24]Fan. S. Chapline, M.G. Franklin, N. R. Tombler, T. W. Cassell, Science 283, 512 (1999).
[25]D. Normile, Science 286, 2056 (1999).
[26]Kim, P and Lieber, C. M , Science 286, 2148(1999).
[27]C Journet﹐P Bernier﹐Appl Phys. 1998, A67.
[28]Yahachi Saito ,Sashiro Uemura, ‘‘Field emission from carbon nanotubes and its application to electron sources’’, Carbon, 38, 169 (2000)

[29]M J Yacaman﹐M M Yoshida﹐L Rendon﹐J G Saniesteban﹐Appl Phys Lett, 1993 62 202.
[30]Chris Bower, Wei Zhu, Sungho Jin and Otto Zhou, ‘‘Plasma- induced alignment of carbon nanotubes’’, Appl. Phys. Lett., 77, 830 (2000)
[31]M. Okai, T. Muneyoshi, T. Yaguchi, and S. Sasaki, ‘‘Structure of carbon nanotubes grown by microwave-plasma-enhanced chemical vapor deposition’’, Appl. Phys. Lett., 77, 3468 (2000)
[32]Z. P. Huang, J. W. Xu, Z. F. Ren, J. H. Wang, M. P. Siegal and P. N. Provencio, ‘‘Growth of highly oriented carbon nanotubes by plasma-enhanced hot filament chemical vapor deposition’’, Appl. Phys. Lett., 73, 3845 (1998)
[33]Lijie Ci, Jinquan Wei, Bingqing Wei, Ji Liang, Cailu Xu, Dehai Wu, ‘‘Carbon nanofibers and single-walled carbon nanotubes prepared by the floating catalyst method’’, Carbon, 39, 329 (2001)
[34]H. M. Cheng, F. Li, G. Su, H. Y. Pan, L. L. He, X. Sun and M. S. Dresselhaus, ‘‘Large-scale and low-cost synthesis of single-walled carbon nanotubes’’, Appl. Phys. Lett., 72, 3282 (1998)
[35]T Guo﹐P Nikolaev﹐A Thess﹐D T Colbert﹐R E Smalley﹐Chem Phys Lett, 1995 243 49.
[36]A.C. Dillon, P.A. Parilla, J.L. Alleman, J.D. Perkins, M.J. Heben, ‘‘Controlling single-wall nanotube diameters with variation in laser pulse power’’, Chem. Phys. Lett., 316, 13, (2000)
[37]雷大同,劉逸文. “油系鈦酸鋇漿料之分散及流變性質對薄帶特性及陶瓷體 介電強度之影響” (2003) P7
[38]鄧宗禹、黃志彬、邱顯盛 “化學機械研磨廢液之處理與回收”毫微米通訊第九卷第一期(32-41)
[39]P.S.N, “Electrophoretic Deposition(EDP):Mechanisms, Kinetics, and Applixation to Cermics”, J. Am. Ceram. Soc., 79 (8) 1987-2002 (1996).
[40]J. TH. G. Overbeek, “Recent Developments in theUnderstanding of Colloid Stability”, Journal of colloidand interface science Vol. 58, No.2, pp.408-421, 1977.
[41]Lloyd I, Osipow原著, 高文弘、周賢孟譯者, “SURFACE CHEMISTRY”. (1970) P90.

[42]DUNCANJ SHAW 原著, 張有義、郭蘭生編譯 “ Introduction to. Colloid. And Surface Chemistry 4/e” (1997) 4-5.
[43]Krasemann. Lutz, Toutianoush. Ali, Tieke. Bernd “Self-assembled polyelectrolyte multilayer membranes with highly improved pervaporation separation of ethanol/water mixtures” Journal of Membrane Science Volume: 181, 221-228 (2001).
[44]J. C. Bae, Y. J. Yoon, S. J. Lee, H. K. Baik, Physica B, 323, 168-170, (2002).
[45]Godbey. W. T, Wu. K. K, Mikos. A. G, PEI and its role in gene delivery, 1999, 60, 150.
[46]J. A. Lewis, Journal of the American Ceramic Society 83 (2000) 341-2359.
[47]Sheng-Yuan Chen, Tun-Tzeng Lue, Min-Yiut Lee, Chi-Lin Chen, “科儀新知第26卷第四期 94.2.
[48]R. H. Fowler and L. W. Nordheim, Proc. Roy. Soc. (London), A119, 173 (1928).
[49]R. Gomer, “Field emission and Field ionization, New York, American Institute of Physics (1993).
[50]C A Spindt, J Appl Phys, 39 (1968) 3504.
[51]W.W Zhu, C. Bower, G. P. Kochanski, S. jin, Solid-State Electronics, 45, 921 (2001).
[52]S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, H. Dai, Science, 283, 512, (1999).
[53]C. Bower, O. Zhou, W. Zhu, D. J. Werder, S. Jin, Appl. Phys. Lett., 77, 2767, (2000).
[54]N. S. Xu, R. V. Latham, Electron. Lett. 29, 1596, (1993).
[55]C. Bower, O. Zhou, W. Zhu, A. G. Ramirez, G. P. Kochanski, S. Jin, Mater. Res. Soc. Symp. Proc., 593, 215 (2000).
[56]Partho Sarkar, and Patrick S. Nicholson, J. Am. Ceram. Soc, 79, [8] 1987-2002 (1996).
[57]Frederick A. Lowenheim, Modern Electroplating, John Wiley & Sons, Inc, 2nd Edition, p714-730 (1968).
[58]Saxby et al, J of physical Chemistry, 1992, 96, 17
[59]Yahachi Saito , Kazuyuki Seko , Jun-ichi Kinoshita, “Dynamic behavior of carbon nanotube field emitters observed by in situ transmission electron microscopy”.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top