跳到主要內容

臺灣博碩士論文加值系統

(3.95.131.146) 您好!臺灣時間:2021/07/29 02:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:阮光曆
研究生(外文):Quang-Lich Nguyen
論文名稱:操作參數對火花點火引擎之燃燒及廢氣之影響—HCCI燃燒之前期研究
論文名稱(外文):THE EFFECTS OF OPERATING PARAMETERS ON COMBUSTION AND EMISSIONS OF SI ENGINE– A PRE-STUDY OF HCCI COMBUSTION
指導教授:張 崴 縉
指導教授(外文):Wei- Chin Chang
學位類別:碩士
校院名稱:南台科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:84
中文關鍵詞:SIHCCILPG
外文關鍵詞:SIHCCILPG
相關次數:
  • 被引用被引用:2
  • 點閱點閱:249
  • 評分評分:
  • 下載下載:40
  • 收藏至我的研究室書目清單書目收藏:1
摘 要
“均質填充壓縮點火”是一項新的燃燒技術,它的高效率和低排放污染可望發展來取代SI引擎的和CI引擎。LPG是一種高辛烷值和低碳數的燃料,可以降低爆震及促進完全燃燒,此外它也被證實可以延遲點火時刻,因而減少廢氣。在高壓縮比引擎上使用LPG燃料可以增加引擎輸出動力。藉著使用EGR,可以增加進氣溫度來改善燃燒效率和排氣,尤其是HC。因此LPG被認為適合使用於HCCI引擎。因此為了獲得使用LPG當燃料的 HCCI引擎的最佳自燃點火時刻,許多操作參數像:進氣溫度、進氣壓力和在壓縮過程期間的氣體濃度變化,以及殘留氣體的反應機制全部都需要考慮。

在本實驗中,修改一具118C.C.四行程引擎,使其壓縮比高達18.5,以進行HCCI燃燒。實驗結果發現不同的進氣溫度和燃油流率的測試是為了找出它們對於排氣污染和燃燒特性的影響。藉由對燃燒壓力和指示平均有效壓力的研究以便區別燃燒性能表現。此外,藉著增加等值比,其點火時刻將會提前以及燃燒持續期將會縮短。實驗結果發現在等值比(Φ)為0.63時,點火時刻會提前大約25 CAD BTDC;而在等值比為0.45時,點火時刻在5 CAD BTDC 時開始。

此實驗引擎在2500RPM時是最佳運轉狀況,可達到完全然燒與較少的廢氣排放。對於HCCI引擎而言,適當的EGR率是小於30%,如此不只可以減少排氣污染和燃油消耗,也可以改善引擎性能。另外,不同的EGR率會影響HCCI引擎燃燒的特徵,特別像點火時刻、汽缸壓力和汽缸溫度。

此外,諸多因素像:引擎結構、運轉速度、引擎尺寸和工作環境…等,都可能對燃燒產生一些影響。所以要達到HCCI引擎的理想操作仍然有著許多的挑戰。
ABSTRACT
Homogeneous charge compression ignition is a new combustion technology that can be developed as an alternative to SI or CI engine with its high efficiency and low emissions. LPG is one of the high octane fuels with lower carbon number, and it will oppose knocking and improve combustion completion, moreover, delayed ignition timing can be obtained, hence emissions will also be reduced. Using LPG at high compression ratio engine will improve power output. By applying EGR, the increased intake temperature will improve both combustion efficiency and emissions especially on HC. Therefore, LPG is considered to be suitable for HCCI engine. However, to obtain the optimal auto-ignition timing of LPG fueled HCCI engine, operation parameters such as intake temperature, pressure, and concentration history during the compression process, and the unique reaction mechanism of residual gas are all need to be considered.
A 118 CC, 4 strokes SI engine was modified in this experiment, and a high compression ratio of 18.53 was designed to produce HCCI combustion. The experiment results show that different intake air temperature and fuel flow rates were tested in order to identify their effects on exhaust emissions and combustion characteristics. Combustion pressure and indicated mean effective pressure (IMEP) were investigated to characterize the combustion performance. Moreover, with increases of equivalence ratio, ignition timing cab be advanced and combustion duration will be shortened. The experiment results show that at equivalence ratio ( = 0.63) the ignition timing was earlier by as much as 25 CAD BTDC, at = 0.45 the ignition timing was begun at 5 CAD BTDC.
The engine works best at 2500 rpm which will produce completed combustion and less emission. Suitable EGR ratio for the HCCI combustion is considered to be less than 30%, which can reduce emissions and fuel consumption but improve engine performance. In addition, varying the rate of EGR will affect the combustion characteristics especially ignition timing, pressure and temperature of cylinder.
Besides, factors such as engine structure, rotation speed, engine size and working environment might also cause some effects on combustion as well. So there are still challenges associated with the optimal operation of HCCI engine.
TABLE OF CONTENTS
ABSTRACT I
ACKNOWLEDGMENTS III
TABLE OF CONTENTS IV
LIST OF TABLES VII
LIST OF FIGURES VIII
CHAPTER1. INTRODUCTION 1
1.1 Internal Combustion Engines 1
1.2 The Diesel Engines 2
1.3 The Spark Ignited Engines 3
1.4 Novel Engine Technology 4
1.5 Fuels Used for Internal Combustion engines. 5
1.6 Engine Emissions 8
CHAPTER2. BACKGROUND AND LITERATURE REVIEW OF HOMOGENEOUS CHARGE COMPRESSION IGNITION 9
2.1 Motivation 9
2.2 HCCI Combustion Literature Review 10
2.3 The Basic Principle of the HCCI Engine 14
2.4 HCCI Combustion Background 15
2.4.1 HCCI combustion characteristics 15
2.4.2 HCCI-2 stroke engines 16
2.4.3 HCCI-4 stroke engines 18
2.5 Advantages and Challenges of HCCI Combustion 19
2.5.1 Advantages 19
2.5.2 Challenges 21
2.5.2.1 Hard to control ignition timing and combustion rate 21
2.5.2.2 Relatively narrow operating range 22
2.5.2.3 Difficult with cold start and high load 22
2.5.2.4 High CO and HC emissions, particularly at lower load condition 23
CHAPTER 3: EXPERIMENT APPARATUS AND PROCEDURES 24
3.1 Experiment Apparatus 24
3.1.1 Experiment set up 24
3.1.1.1 Engine specifications 24
3.1.1.2 Air heater 26
3.1.1.3 Air and fuel intake system 26
3.1.1.4 Exhaust gas system 27
3.1.2 Engine measurement 28
3.1.2.1 Air fuel ratio determination 28
3.1.2.2 Air and fuel flow measurement 28
3.1.2.3 Temperature measurement and control 29
3.1.2.4 Shaft encoder 30
3.1.2.5 Pressure sensor 30
3.1.2.6 Torque sensor 31
3.1.2.7 Labview data acquisition system 31
3.1.2.8 Emission analyzers 31
3.2 Experiment Conditions and Procedures 32
3.2.1 Experiment procedures 32
3.2.2 Fuels 33
3.2.3 Operating conditions 35
CHAPTER 4 EXPERIMENT RESULTS 36
4.1 Air Fuel Ratio and Operating Charge Definition 36
4.1.1 Air fuel ratio determination 36
4.1.2 Operating stability definition 37
4.2 HCCI Combustion 40
4.2.1 Combustion characteristics 40
4.2.2 Cycle to cycle variation 42
4.2.3 Effect of equivalence ratio on In-cylinder pressure 46
4.3 Exhaust Gas Emissions 47
4.3.1 Effect of equivalence ratio on emissions 47
4.3.1.1 Exhaust gas temperature 47
4.3.1.2 HC emission 48
4.3.1.3 CO emission 49
4.3.1.4 CO2 emission 50
4.3.1.5 NO emission 50
4.3.1.6 O2 emission 51
4.3.2 Effect of fuel on exhaust emission 52
4.3.2.1 Exhaust gas temperature 52
4.3.2.2 HC emission 53
4.3.2.3 CO emission 54
4.3.2.4 CO2 emission 54
4.3.3 Effect of inlet air temperature on emission 55
4.3.3.1 Exhaust gas temperature 55
4.3.3.2 HC emission 56
4.3.3.3 CO emission 57
4.3.3.4 NO emission 58
4.3.3.5 O2 emission 60
CHAPTER5. CONCLUSIONS AND SUGGESTIONS 61
5.1 Conclusions 61
5.1.1 Characteristics of combustion of SI and HCCI engine 61
5.1.2 Effect of operating parameters on emissions and combustion 62
5.1.3 Engine speed optimization 63
5.2 Suggestions for Future Work 63
5.2.1 Performance optimization 63
5.2.2 Study the effect on HCCI combustion with more operating parameters 63
5.2.3 Combination of experiment and mathematic model 64
REFERENCES 65
SYMBOLS 68
ACRONYMS AND ABBREVIATIONS 69
APPENDIX 71
References

1.Heywood, J.B., Internal Combustion Engine Fundamentals Mc Graw-Hill Book Company 1997.
2.Pulkrabek, W.W., Engineering fundamentals of the internal combustion engine, London: Upper Saddle River, N.J.:Prentice Hall,c1997.
3.Corporation, W.N., Pure Energy, Gas Cogeneration Plants pamphlet. 1997.
4.Akansu, S.O.D., Zafer Kahraman, Nafiz Veziroglu, T. Nejat, Internal combustion engines fueled by natural gas--hydrogen mixtures. International Journal of Hydrogen Energy, 2004. 29(14): p. 1527-1539.
5.Karim, G.A., Hydrogen as a spark iginition engine fuel. Hydrogen Energy 2003. 28: p. 569-577.
6.Van Thi Bong, H.T.C., Theory of Internal Combustion Enigine Ho Chi Minh: Vietnam National University Ho Chi Minh, 2004.
7.Law, D., Controlled combustion in an internal combustion engine with a fully variable valve train SAE, 2000. 0251.
8.Yeom, K.J., Jinyoung Bae, Choongsik, Homogeneous charge compression ignition of LPG and gasoline using variable valve timing in an engine. Fuel, 2007. 86(4): p. 494-503.
9.Berkeley, U., Homogeneous Charge Compression Ignition (HCCI), 2006 Jan, http://www.me.berkeley.edu/cal/HCCI/.
10.Onishi, S., Hong Jo, S., Shoda, K., Do Jo, P. and Kato, S.,, Active Thermo-Atmosphere Combustion (ATAC) - A New Combustion Process for Internal Combustion Engine. SAE Technical Paper, 1979(790501).
11.Najt PM, F.D., Compression-ignited homogeneous charge combustion. . SAE 1983. 830264.
12.RH, T., Homogeneous charge compression ignition (HCCI) engines. SAE 1989(892068.).
13.Kimura S, A.O., Ogawa H, New combustion concept for ultraclean and high-efficiency small DI diesel engines. SAE 1999(3681).
14.Lavy, J., Dabadie,J., Angelberger,C., Duret,P.,Willand, J., Juretzka, A.,Schaflein, J., Ma,T., Lendresse,Y.,Satre,A.,Schulz,C., Kramer,H., Zhao,H.,and Damiano, Lee, Chang Sik, Innovative Ultra-low NOx Controlled Auto-Ignition Combustion Process for Gasoline Engines: the 4-SPACE Project. SAE Technical Paper, 2000. 47(1837).
15.Chen, R. and N. Milovanovic, A computational study into the effect of exhaust gas recycling on[no-break space]homogeneous charge compression ignition combustion in internal combustion engines fuelled with methane. International Journal of Thermal Sciences, 2002. 41(9): p. 805-813.
16.Ayala, F., J.C. Keck, and J.B. Heywood, Two-stage ignition in HCCI combustion and HCCI control by fuels and additives. Vol. 132. 2003: Elsevier Science. 219-239.
17.Chen, W. and Z. Huang, A fundamental study on the control of the HCCI combustion and emissions by fuel design concept combined with controllable EGR. Part 1. The basic characteristics of HCCI combustion. 2005. 84: p. 1074-1083.
18.Yao, M.F., et al., Study on the controlling strategies of homogeneous charge compression ignition combustion with fuel of dimethyl ether and methanol. Fuel, 2006. 85(14-15): p. 2046-2056.
19.Morsy, M.H., Ignition control of methane fueled homogeneous charge compression ignition engines using additives. 2007. 86: p. 533-540.
20.Kong, S.-C., A study of natural Gas/DME combustion in HCCI engines using CFD with detailed chemical kinetics. Fuel, 2006. In Press, Uncorrected Proof.
21.Ogink, R., Computer Modeling of HCCI Combustion, Division of Thermo and Fluid Dynamics, CHALMERS UNIVERSITY OF TECHNOLOGY, Göteborg, Sweden, 2004. .
22.Daniel Flowers, S.A., Ray Smith, HCCI In A CFR Engine: Experiments And Detailed Kinetic Modeling. Society of Automotive Engineers, 2000. 29: p. 257-274.
23.Ogink, R., HCCI homepage news, 2005 sept 20. 2006 sept 10, http://www.tfd.chalmers.se/~ogink/.
24.Lee, C.S., Improved emission characteristics of HCCI engine by various premixed fuels and cooled EGR. 2006. 85: p. 695-704.
25.Dubreuil, A., et al., HCCI combustion: Effect of NO in EGR. Proceedings of the Combustion Institute, 2007: p. 123-134.
26.Computational Modelling Group, D.o.C.E., University of Cambridge, Full List of the Computational Modelling Group's Publications 2007, http://como.cheng.cam.ac.uk/index.php?Page=Publications&Section=Full.
27.Sankaran, R., et al., The effects of non-uniform temperature distribution on the ignition of a lean homogeneous hydrogen-air mixture. Proceedings of the Combustion Institute, 2005. 30(1): p. 875-882.
28.Chen, W. and Z. Huang, A fundamental study on the control of the HCCI combustion and emissions by fuel design concept combined with controllable EGR. Part 2. Effect of operating conditions and EGR on HCCI combustion. 2005. 84: p. 1084-1092.
29.Shi, L.C., Yi Deng, Kangyao Peng, Haiyong Chen, Yuanyuan, Study of low emission homogeneous charge compression ignition (HCCI) engine using combined internal and external exhaust gas recirculation (EGR). Energy, 2006. 31(14): p. 2665-2676.
30.Ceviz, M.A., F. Yuksel, Cyclic variations on LPG and gasoline-fuelled lean burn SI engine. 2006. 31: p. 1950-1960.
31.Nguyen Quang Lich, W.C.C. Effect of Exhaust Gas Re-circulation on the Emissions of HCCI Combustion. in 23th National Conference on Mechanical Engineering - The Chinese Society of mechanical Engineers. 2006. Kunsan University of Technology, Tainan, Taiwan
32.Erlandsson, O., Thermodynamic Simulation of HCCI Engine Systems, Lund Institute of Technology , Derpartment of Heat And Power Engineering, Lund Sweden, 2002.
33.Su, H., et al., A computational study of an HCCI engine with direct injection during gas exchange. Combustion and Flame, 2006. 147(1-2): p. 118-132.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top