跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/02 22:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:阮霸王
研究生(外文):Ba-Vuong Nguyen
論文名稱:PAA-Alg-Si水膠破壞力學與黏彈性力學性質之研究
論文名稱(外文):INVESTIGATION OF FRACTURE AND VISCOELASTIC PROPERTIES OF PAA-Alg-Si HYDROGELS
指導教授:劉乃上
指導教授(外文):Nai-Shang Liou
學位類別:碩士
校院名稱:南台科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:145
中文關鍵詞:水膠抵抗斷裂黏彈性生物材料單缺口拉伸試驗
外文關鍵詞:HydrogelFracture ResistanceViscoelasticBiomaterialSingle Notched Tensile Test
相關次數:
  • 被引用被引用:0
  • 點閱點閱:366
  • 評分評分:
  • 下載下載:56
  • 收藏至我的研究室書目清單書目收藏:0
水膠其名稱來自於本身高吸水性之結構特性,其本身具有優良機械性質以及具備了生醫材料方面的應用優勢。
水凝膠因具有低摩擦性與高強度的特性,而具備適用於軟骨關節等生醫方面的潛力優勢,因而本次研究針對於紫外光照射後之PAA-Alg-Si 型水凝膠探討其機械性質。
PAA-Alg-Si型水凝膠具有PAA與Silica的比重特性,而本次研究目的在於PAA-Alg -Si型水凝膠的斷裂抵抗與粘彈性性質特性之研究;水凝膠AAc 和Si 的破裂抵抗具有不同的比重與負載荷重關係,實驗利用單軸缺口拉伸試驗來求得水凝膠破裂性質,而其方法如下:
由單軸缺口拉伸試驗計算於原有缺口上產生之新裂縫,經研究可將水凝膠視為線性黏彈性材料;計算這破裂所做的功減去估計的功為黏彈性損失的功,其可由裂縫的負載與卸載拉伸試驗曲線得知,此外破裂與時間的關係由單軸拉伸負載試驗亦能得知。
由實驗數據所獲得之3種不同的負載與移位比分別為 (0.08、0.2與0.6 mm/sec) 最後將其輸入標準線性實體模型作驗證。
Hydrogels derive their name from their super absorbent natural. Hydrogels have inherently weak mechanical strength. However, the advantages of bio-compatibility and hydrophilicity make hydrogels become biomaterials for many medical applications. UV polymerized PAA-Alg-Si (Poly Acrylic Acid-Alginate-Silica) hydrogels have the potential to be used to repair the damaged articular cartilage due to the properties of low friction and high mechanical strength. The weight ratios of PAA and Silica in PAA-Alg-Si hydrogels have effect on the mechanical properties of PAA-Alg-Si hydrogels. In this study, the fracture resistances and the viscoelastic properties of UV polymerized PAA-Alg-Si hydrogels were investigated. The fracture resistances of aforementioned hydrogels with different Acrylic acid (AAc) and Silica (Si) weight ratios were investigated under tensile load. Single notched tensile tests were used to examine the fracture properties of these hydrogel materials under tensile load. Fracture resistances of nine different types of UV polymerized PAA-based hydrogels were characterized. Fracture resistance was computed by dividing fracture work by the new created fracture area under single notched tensile test. In current study, hydrogels were considered as linear viscoelastic materials. The fracture works were computed by subtracting the estimated work due to viscoelastic dissipation from the work between loading and unloading load-extension curves of single notched tensile tests. Furthermore, the time dependent mechanical properties of UV polymerized PAA-Alg-Si hydrogels under uniaxial tensile loads were characterized. The experimental data were obtained at three different loading displacement rates (0.08, 0.2 and 0.6 mm/sec) and these data were fitted into the standard linear solid models.
ABSTRACT I
ACKNOWLEDGMENTS II
LIST OF SYMBOLS III
TABLE OF CONTENTS IV
LIST OF TABLES VII
LIST OF FIGURES IX
CHAPTER 1: INTRODUCTION 1
1.1 Background 1
1.2 Motivation 2
1.3 Research approach 2
CHAPTER 2: FRACTURE AND VISCOELASTICITY OF HYDROGELS 4
2.1 Fracture mechanics of hydrogels 4
2.1.1 Stress Intensity Factor, K 6
2.2.1 J-Integral 7
2.2.2 Crack Tip Opening Displacement (CTOD), δ 8
2.3 Fracture tests for soft viscoelastic biomaterials 10
2.3.1 Model fracture resistance of soft viscoelastic tissues 10
2.3.2 Determination of total work 11
2.3.3 Determination of viscoelastic work 12
2.3.4 Determination of the fracture resistance 13
2.4 Viscoelasticity of hydrogels 14
2.4.1 The Maxwell model 15
2.4.2 The Voigt model 17
2.4.3 The standard linear solid 18
2.4.4 Solution of the standard linear solid 22
CHAPTER 3: DESIGN OF EXPERIMENTAL SETUP 24
3.1 Stepper motor 24
3.1.1 Design of stepper motor controller 24
3.1.2 Design of stepper motor driver circuit 24
3.1.3 Design of LabVIEW® interface for stepper motor controller 26
3.2 Load cell structure in experiment 27
3.3 Amplifier 28
3.3.1 Description 28
3.3.2 Set up procedure for experiments 29
3.4 NI-DAQmx Card 30
3.5 PCI-1424 Card and MegaPlus ES 1.0 Camera 31
3.5.1 PCI-1424 card 31
3.5.2 MegaPlus ES 1.0 Camera 32
3.5.3 PCI-1424 board configuration 33
3.5.4 PCI-1424 card installation 33
3.5.5 Use PCI-1424 Card and MegaPlus ES 1.0 Camera in LabVIEW® 34
CHAPTER 4: EXPERIMENTAL METHODS AND RESULTS 36
4.1 Method to characterize fracture resistance of hydrogels 36
4.1.1 Fracture resistance experiment system approach 36
4.1.2 Fracture resistance estimation 38
4.2 Viscoelastic properties of hydrogels 40
4.2.1 Experimental methods for hydrogel viscoelastic properties characterization 40
4.2.2 Tensile strength tests 41
4.2.3 Vicoelastic properties of hydrogels 41
4.3 Fracture resistance of hydrogel 42
4.4 Mechanical properties under tensile loads 53
4.5 Viscoelastic properties of hydrogels 59
CHAPTER 5: CONCLUSIONS AND DISCUSSIONS 86
REFERENCES 88
APPENDIX A: STEPPER MOTOR 90
A.1 Introduction to stepper motor 90
A.2 Stepper motor fundamental 90
A.3 Polarity of Stepper Motor : Unipolar and bipolar 92
A.4 Permanent magnet (PM) stepper motor 92
A.5 Variable reluctance (VR) stepper motor 94
A.6 Hybrid (HB) stepper motor 95
A.7 Identify the permanent magnet/hybrid motor leads 95
A.8 Torque and speed of stepper motor 96
A.9 Wave drive 97
A.10 Half step 98
A.11 Bipolar and unipolar operation 98
A.12 High performance stepper motor 99
A.13 Performance limitations of stepper motor 100
APPENDIX B: LOAD CELL 102
B.1 Strain gage load cells 102
B.2 Bending load cells 102
B.3 Shear load cells 103
B.4 Compression load cells 104
B.5 Ring torsion load cells 105
B.6 Capacity selection 106
APPENDIX C: NI-DAQMX USB-6009 SET UP PROCEDURE 109
C.1 Introduction 109
C.2 Test USB-6009 in MAX (Measurement & Automation Explorer) 110
C.3 Configure the USB-6009 in MAX 113
C.4 Use USB-6009 in LabVIEW® 117
APPENDIX D: MANUAL FOR THE UNIAXIAL TEST DEVICE 120
D.1 Connection stepping motor to driver and PC: 120
D.2 Connection load cell to amplifier: 121
D.3 Connection amplifier to NI-DAQmx USB-6009 card: 122
D.4 Connection NI-DAQmx USB-6009 card to computer: 122
D.5 Connection camera to computer: 123
D.6 Running program: 123
TABLE OF CONTENTS 129
LISTS OF FIGURES 132
LISTS OF TABLES 137
Bishop, R. H. (2002). The Mechatronics Handbook. New York Washington, D.C., CRC Press.
Brannon-Peppas, L. (1994). Preparation and Characterization of Crosslinked Hydrophilic Networks. Washington, DC, ACS.
Brendan, E. K. and L. L. Jack (2003). "A model of fracture testing of soft viscoelastic tissues." Journal of Biomechanics 36: 605-608.
Drozdov, A. D. (1998). Mechanics of Viscoelastic Solids. Chichester ; New York, John Wiley & Sons, Ltd.
Eshelby, J. D. (1974). Calculation of energy release rate. Sijthoff & Noordhoff, Alphen aan den Rijn, The Netherlands.
Irwin, G. R. (1948). "Fracture dynamics. In Fracturing of Metals." American Society forMetals,Materials Park, Ohio: 147–166.
Irwin, G. R. (1957). "Analysis of stresses and strains near the end of a crack traversing a plate." J. Appl. Mech: 24:361–364.
Kaufmann, E. N. (2003). Characterization of Materials. the United States of America, John Wiley & Sons.
Lewis, J. L. (2003). A model of fracture testing of soft viscoelastic tissues, Elsevier Science.
Martinez-Vega, J. J. (2003). Modeling of the viscoelastic behavior of amorphous polymers by the differential and integration fractional method: the relaxation spectrum, Elsevier Science.
Michelle, O.-T. and F. C. Robert (2001). "Technique for estimating fracture resistance of cultured neocartilage." Journal of Materials Science: Materials in Medicine 12(4): 327-332.
Mow, V. C., A. Ratcliffe, et al. (1992). "Cartilage and diarthrodial joints as paradigms for hierarchical materials and structures." Biomaterials 13: 67-97.
Nguyen, B. V., M. H. Ling, et al. (2007). Fracture Resistance of PAA-Alg-Si Hydrogels Under Tensile Load. 2007 SEM Annual Conference & Exposition, Springfield, Massachusetts USA.
Nguyen, B. V. and N. S. Liou (2006). A Method to Investigate Fracture Resistance of Soft Biomaterials. The 23rd National Conference on Mechanical Engineering The Chinese Society of Mechanical Engineering, Kun Shan University.
Novakovic, G. V. and R. I. Freshney (2006). Culture of cells for tissue engineering. Hoboken, N.J., Wiley-Liss.
Polak, T. A. and C. Pande (1999). Engineering Measurements - Methods and Intrinsic Errors. London, U.K, Professional Engineering Publishing.
Riande, E., R. Diaz-Calleja, et al. (1999). Polymer viscoelasticity : stress and strain in practice. New York, Marcel Dekker, Inc.
Rice, J. R. (1968). "A path independent integral and the approximate analysis of strain concentrations by notches and cracks." J. Appl. Mech. 35:379–386.
SAX, B. H. (1995). Stepper Motor Driving, SGS-THOMSON Microelectronics.
Shaw, M. T. and W. J. MacKnight (2005). Introduction to Polymer Viscoelasticity,. New Jersey, A JOHN WILEY & SONS, INC.,.
Sih, G. C. (1973). "Hand Book of Stress-Intensity Factors. Lehigh University, Institute of Fracture Mechanics, Bethlehem, Penn."
Silver, F. H., G. Bradica, et al. (2004). "Do changes in the mechanical properties of articular cartilage promote catabolic destruction of cartilage and osteoarthritis?" Matrix Biology 23(7): 467-476.
Stammen, J. A., S. Williams, et al. (1999). MECHANICAL PROPERTIES OF A NOVEL HYDROGEL FOR THE REPLACEMENT OF DAMAGED ARTICULAR CARTILAGE. Sewing Humanity, Advancing Technology, Amta, GA, USA.
Stammen, J. A., S. Williams, et al. (1999). Mechanical properties of a novel hydrogel for the replacement of damaged articular cartilage.
Turner, C. E. (1979). Methods for post-yield fracture safety assessment. London, Applied Science Publishers.
Wells, A. A. (1961). Unstable crack propagation in metals-cleavage and fast fracture. In Proceedings of Crack Propagation. Canfield, United Kingdom: 210–230.
Westergaard, H. M. (1939). "Bearing pressures and cracks." J. Appl. Mech: 61:A49–A53.
Wong, V. W., A. C. Chen, et al. (2006). Biomechanical assessment of tissue retrieved after in vivo cartilage defect repair: tensile modulus of repair tissue and integration with host cartilage, Elsevier Science.
Yedamale, P. and S. Chattopadhyay (2002). Stepper Motor Microstepping with PIC18C452. U.S.A, Microchip Technology Inc.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top