跳到主要內容

臺灣博碩士論文加值系統

(3.235.185.78) 您好!臺灣時間:2021/07/27 18:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭明秀
研究生(外文):Trinh, Minh Tuynh Tu
論文名稱:太陽能晶片焊接製程應力分析
論文名稱(外文):Numerical simulation of temperature and thermal stress distribution during soldering procedure of solar cells
指導教授:林克默林克默引用關係
指導教授(外文):Keh-moh Lin
學位類別:碩士
校院名稱:南台科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:91
中文關鍵詞:焊接製程熱應力ANSYS
外文關鍵詞:solderingthermal stressANSYS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:247
  • 評分評分:
  • 下載下載:90
  • 收藏至我的研究室書目清單書目收藏:0
目前在製造太陽光電模組中常用焊接方法將晶片串連成模組。但此方法中,焊點之品質受到溫度及熱源速度之影響甚鉅。高溫會在焊縫及晶片上產生應力,使晶片產生 扭曲變形或裂縫等情形。在本研究中,我們利用一有限元素程式ANSYS來模擬焊接過程中的熱應力分佈情形。首先研究矽晶片之機械特性,並將之與模擬結果及實驗結果比較以驗證所使用模型之有效性。在此階段中亦計算了臨界應力或負載接觸。接著,在兩種模式中進行熱應力之模擬:熱學模式及力學模式。熱學模式之目的是為了找出當熱點沿著焊條移到晶片上時晶圓上的溫度場。在模擬中使用四種溫度的熱源,即250, 300, 350, 及400oC。而力學模式之模擬則為了分析從等溫時間到降溫時間之間的應力分佈情形。模擬結果顯示,當熱源在晶圓上移動時,不用的溫度會導致應力瞬變現象。
Currently in photovoltaic modules fabrication, soldering is a widely used technique to interconnect solar cell strings into a module. In this method, the quality of solder joint mostly depends on the temperature and velocity of the heat source. But high temperature can introduce stress on the joints and cells. This can cause warping and possible breakages of the cells. Based on the ANSYS software, three-dimensional (3-D) finite element model was developed. The finite element model was used to evaluate the transient temperatures and thermal stresses during soldering process. First, we investigated the mechanical properties of silicon solar cell and used FEM to calculate the critical stress or load contact. And bending test is also carried out to verify the effectiveness of propose numerical models. Then, the simulations of thermal stress were conducted in two models: thermal model and mechanical model. The thermal model was developed to simulate the temperature fields on the wafer if there is a heat point moves along the tab onto the cell. Based on the characteristic of the temperature fields, the mechanical model was consequently to analyze the distribution of stress during isothermal time.
TABLE OF CONTENTS
ACKNOWLEDGEMENTS I
ABSTRACT II
TABLE OF CONTENTS III
LIST OF TABLES……………………………………………………………………….VI
LIST OF FIGURES VII
CHAPTER 1 1
INTRODUCTION 1
1.1 A brief of introduction 1
1.2 Papers review 4
1.3 Purpose of study 9
1.4 Study method 10
CHAPTER 2 11
FINITE ELEMENT METHOD 11
2.1 The Couple – Field analysis 11
2.2 Thermal model 12
2.3 Mechanical model 15
CHAPTER 3 17
MECHANICS 17
3.1 Mechanical properties of silicon 17
3.1.1 Young’s Modulus and Poisson ratio 17
3.1.2 Failure behavior 18
3.2 Bending behavior of thin plate 21
3.3 Finite Element Model 22
3.3.1 The morphology of element 22
3.3.2 Mesh density 24
3.3.3 Critical load contact 27
3.4 Bending test 30
CHAPTER 4 33
THERMAL STRESS ANALYSIS 33
4.1 Coupled – field solution 33
4.2 ANSYS setup 34
4.3 Thermal problem setup 37
4.4 Mechanical problem setup 38
CHAPTER 5 40
RESULT AND DISCUSSION 40
5.1 Temperature distribution 40
5.1.1 Contour plots 40
5.1.2 Time history 47
5.1.3 Path plot 50
5.2 Thermal stress 55
5.2.1 Thermal stress distribution 55
5.2.2 History 64
5.2.3 Path plot 66
5.2.4 Maximum stress 75
CHAPTER 6 76
CONCLUSION AND FUTURE WORK 76
REFERENCES…………………………………………………………………………..79

LIST OF TABLES
Table 1 1: Types of Field Failures Observed 3
Table 3 1: Modulus and Poisson ratio of materials 18
Table 3 2: Fracture toughness of some material in comparison silicon 20
Table 3 3: Fracture strength of silicon and germanium at different geometric structure 21
Table 3 4: Comparison between two parameters 26
Table 3 5: Principal normal and maximum stress of 350m Si wafer under different loading, MPa 28
Table 3 6: Principal normal and maximum stress of 200m Si wafer under different loading, MPa 28
Table 3 7: Principal normal and maximum stress of 150m Ge wafer under different loading, MPa …………………………………………………………………………….29
Table 4 1: The time steps of different temperature solderings 36
Table 5 1: Maximum stresses of four different temperature soldering 75


LIST OF FIGURES
Figure 1 1: A sample of silicon PV Module 2
Figure 1 2: The temperature distribution with a moving heat point [4] 4
Figure 1 3: The distribution of the stress tensor at y = 0 [4] 5
Figure 1 4: The contour plot of Franke’s simulated results [12] 7
Figure 1 5: Temperature distribution from time (sec) [13] 8
Figure 1 6: Conceptual representation of the stress development [14] 8
Figure 1 7: The sample of silicon solar cell 9
Figure 3 1: Young’s modulus and Poisson ratio graphs[17] 18
Figure 3 2: The breakage of silicon solar cell sample 19
Figure 3 3: Two cubic elements for structure problem in ANSYS 23
Figure 3 4: Maximum stresses of 6 mesh level by using SOLID45 and SOLID95 24
Figure 3 5: The 2D mesh of the wafer 25
Figure 3 6: The 3D mesh of the wafer 25
Figure 3 7: Comparison between CPU time and stress of each mesh density (Using Origin) 27
Figure 3 8: The relationship between applied load and maximum stress 30
Figure 3 9: The INSTRON system 31
Figure 3 10: The bending test by tensile tester 31
Figure 3 11: The bending test result of silicon solar cell 32
Figure 4 1: Data flow of Indirect Method 34
Figure 4 2: Meshed structure of silicon wafer 34
Figure 4 3: The series of thermal load points 35
Figure 5 1: The temperature distribution at 1 (sec) of step time of 250oC soldering 41
Figure 5 2: The temperature distribution at 3 (sec) of step time of 250oC soldering 41
Figure 5 3: The temperature distribution at 25 (sec) of step time of 250oC soldering 42
Figure 5 4: The temperature distribution at 1 (sec) of step time of 300oC soldering 42
Figure 5 5: The temperature distribution at 3 (sec) of step time of 300oC soldering 43
Figure 5 6: The temperature distribution at 25 (sec) of step time of 300oC soldering 43
Figure 5 7: The temperature distribution at 1 (sec) of step time of 350oC soldering 44
Figure 5 8: The temperature distribution at 3 (sec) of step time of 350oC soldering 44
Figure 5 9: The temperature distribution at 7.6 (sec) of step time of 350oC soldering 45
Figure 5 10: The temperature distribution at 1 (sec) of step time of 400oC soldering 45
Figure 5 11: The temperature distribution at 3 (sec) of step time of 400oC soldering 46
Figure 5 12: The temperature distribution at 7.6 (sec) of step time of 400oC soldering 46
Figure 5 13: The temperatures varying from time at 3 points P00, P10, P20 of 250oC soldering 48
Figure 5 14: The temperatures varying from time at 3 points P00, P10, P20 of 300oC soldering 48
Figure 5 15: The temperatures varying from time at 3 points P00, P10, P20 of 350oC soldering 49
Figure 5 16: The temperatures varying from time at 3 points P00, P10, P20 of 400oC soldering 49
Figure 5 17: The temperature distribution on A-A path at 3 (sec) of step time of 250oC soldering 51
Figure 5 18: The temperature distribution on A-A path at 10 (sec) of step time of 250oC soldering 51
Figure 5 19: The temperature distribution on A-A path at 3 (sec) of step time of 300oC soldering 52
Figure 5 20: The temperature distribution on A-A path at 10 (sec) of step time of 300oC soldering 52
Figure 5 21: The temperature distribution on A-A path at 3 (sec) of step time of 350oC soldering 53
Figure 5 22: The temperature distribution on A-A path at 5 (sec) of step time of 350oC soldering 53
Figure 5 23: The temperature distribution on A-A path at 3 (sec) of step time of 400oC soldering 54
Figure 5-24: The temperature distribution on A-A path at 5 (sec) of step time of 400oC soldering.55
Figure 5 25: The y-direction stresses distribution at 1 (sec) of step time of 250oC soldering 56
Figure 5 26: The y-direction stresses distribution at 3 (sec) of step time of 250oC soldering 56
Figure 5 27: The y-direction stresses distribution at 10 (sec) of step time of 250oC soldering 57
Figure 5 28: The y-direction stresses distribution at 25 (sec) of step time of 250oC soldering 57
Figure 5 29: The y-direction stresses distribution at 1 (sec) of step time of 300oC soldering 58
Figure 5 30: The y-direction stresses distribution at 3 (sec) of step time of 300oC soldering 58
Figure 5 31: The y-direction stresses distribution at 10 (sec) of step time of 300oC soldering 59
Figure 5 32: The y-direction stresses distribution at 25 (sec) of step time of 300oC soldering 59
Figure 5 33: The y-direction stresses distribution at 1 (sec) of step time of 350oC soldering 60
Figure 5 34: The y-direction stresses distribution at 3 (sec) of step time of 350oC soldering 60
Figure 5 35: The y-direction stresses distribution at 5 (sec) of step time of 350oC soldering 61
Figure 5 36: The y-direction stresses distribution at 7.6 (sec) of step time of 350oC soldering 61
Figure 5 37: The y-direction stresses distribution at 1 (sec) of step time of 400oC soldering 62
Figure 5 38: The y-direction stresses distribution at 3 (sec) of step time of 400oC soldering 62
Figure 5 39: The y-direction stresses distribution at 5 (sec) of step time of 400oC soldering 63
Figure 5 40: The y-direction stresses distribution at 7.6 (sec) of step time of 400oC soldering 63
Figure 5 41: The y-direction stresses over time at path A-A of 250oC soldering 64
Figure 5 42: The y-direction stresses over time at path A-A of 300oC soldering 65
Figure 5 43: The y-direction stresses over time at path A-A of 350oC soldering 65
Figure 5 44: The y-direction stresses over time at path A-A of 400oC soldering 66
Figure 5 45: The thermal stress profiles along A-A path at 1 (sec) of step time of 250oC soldering 67
Figure 5 46: The thermal stress profiles along A-A path at 3 (sec) of step time of 250oC soldering 68
Figure 5 47: The thermal stress profiles along A-A path at 10 (sec) of step time of 250oC soldering 68
Figure 5 48: The thermal stress on A-A path at 25 (sec) of step time of 250oC soldering 69
Figure 5 49: The thermal stress profiles along A-A path at 1 (sec) of step time of 300oC soldering 69
Figure 5 50: The thermal stress profiles along A-A path at 3 (sec) of step time of 300oC soldering 70
Figure 5 51: The thermal stress profiles along A-A path at 10 (sec) of step time of 300oC soldering 70
Figure 5 52: The thermal stress profiles along A-A path at 25 (sec) of step time of 300oC soldering 71
Figure 5 53: The thermal stress profiles along A-A path at 1 (sec) of step time of 350oC soldering 71
Figure 5 54: The thermal stress profiles along A-A path at 3 (sec) of step time of 350oC soldering 72
Figure 5 55: The thermal stress profiles along A-A path at 5 (sec) of step time of 350oC soldering 72
Figure 5 56: The thermal stress profiles along A-A path at 7.6 (sec) of step time of 350oC soldering 73
Figure 5 57: The thermal stress profiles along A-A path at 1 (sec) of step time of 400oC soldering 73
Figure 5 58: The thermal stress profiles along A-A path at 3 (sec) of step time of 400oC soldering 74
Figure 5 59: The thermal stress profiles along A-A path at 5 (sec) of step time of 400oC soldering 74
Figure 5 60: The thermal stress profiles along A-A path at 7.6 (sec) of step time of 400oC soldering 75
[1]Markvart, T., Solar Electricity. Second ed. 2000.
[2]J.H. Wohlgemuth, D.W.C., A.M. Nguyen, J. Miller, Long term Reliability of PV Modules.
[3]www.columbia.edu.
]4]G. Lu, A.K., E. Siores, Elementary mathematical theory of thermal stress and fracture during welding and cutting. Journal of Material Processing Technology, 1999(89-90): p. 298-302.
[5]Novatskii, V., Theory of Elasticity. 1975, Moscow: Mir Publisher.
[6]M.J. Turner, R.W.C., H.C. Martin and L.J. Topp, Stiffness and deflection analysis of complex structure. Journal of Aeronautical Sciences, 1956. 23: p. 805-824.
[7]W. Schafer, P.R.S., Simulation of Solidification Processes with the FEM-Software Package CASTS. 1988: p. 885-891.
[8]J.H. You, Y.Y.Y., Behavior of stress singularities near the free edge of CFC/TZM bond interface under transient high heat flux loading. Fusion Engineering and Design, 1997. 38: p. 331-342.
[9]Dean Deng, H.M., Numerical simulaion of temperature field and residual stress in multi-pass welds in stainless steel pipe and comparion with experimental measurements. Joining and Welding Research Institute, 2005.
[10] Seung-Yo Lee, W.G.O.a.J.D.v.W., Thermo-mechanical Stress Analysis for an Integrated Passive Resonant Module.
[11]Guan, J., Entwicklung elnes 3D-FEM-Programmoduls zur Simulation thermischer Eigenspannungen in Glebprozessen sowle seine Anwendung fur die Optimierung von Gubbauteilen. 1994.
[12]D. Franke, I.S., Calculation of thermal stresses during the soldering of solar cell strings. D-52072 Aachen, Germany, 1994.
[13] Tsai, Y.-L., The Analysis and Experiment on Welding Temperatures and Stresses, in Institute of Mechanical Engineering. 2001, Enginerring National Chiao Tung University: Hsinchu, Taiwan.
[14]Shakeel Safdar, L.L., M.A. Sheikh, Zhu Liu, Finite Element simulation of Laser tube bending: Effect of scanning schemes on bending angle, distortions and stress distribution. Optics & Laser Technology, 2006. 39: p. 1101-1110.
[15]Rao, S.S., The Finite Element Method in Engineering. 1998.
[16]Moaveni, S., Finite Element Analysis - Theory and Application with ANSYS. Second ed. 2003, Mankato.
[17]Wortman, R.A.E., J. Appl. Phys. 36, 1965.
[18]Dowling, N.E., Mechanical Behavior of Materials, ed. n. Edition.
[19]A.Collins, J., Failure of Materials in mechanical design, ed. n. Edition.
[20]A.G. Atkins, Y.W.M., ELASTIC AND PLASTIC FRACTURE Metal, Polymer, Ceramics, Composites, Biological Material. Ellis Horwood Series. 1988, Chichester, England.
[21]W. Schatt, H.W., Werkstoffwissenschaft. 1996, Stuttgart.
[22]P.Boresi, R.J.S., Omar M.Sidebottom, Advanced mechanics of material, ed. t. Edition.
[23]Petersen, K., Silicon as a Mechanical Material. Proceedings of IEEE 70, 1982.
[24]Endros, A., et. al. 14th European Photovoltaic Solar Energy Conference Proceedings, Barcelona 1997.
[25]A.E. Franke, D.B., D.T. Chang, P.T. Jones, T.J. King, R.T. Howe, and G.C. Johnson, Post-CMOS Integration of Germanium Microstructures. IEEE.
[26]Eduard Ventsel, T.K., Thin Plates and Shells - Theory, Analysis and Applications, ed. 1st. 2001: CRC.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top