跳到主要內容

臺灣博碩士論文加值系統

(35.173.42.124) 您好!臺灣時間:2021/07/26 14:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:武河海
研究生(外文):Vu Ha Hai
論文名稱:左心室輔助器非牛頓定律之流體分析
論文名稱(外文):Fluid Analysis inside Left Ventricular AssistDevices with Non-Newtonian TheoryFluid Analysis inside Left Ventricular Assist Devices with Non-Newtonian theory
指導教授:林宗賢林宗賢引用關係
指導教授(外文):Lin, Cheung-Hsian
學位類別:碩士
校院名稱:南台科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:100
中文關鍵詞:左心室輔助器非牛頓定律剪應力流體力學
外文關鍵詞:LVADsNon-Newtonianshear stress
相關次數:
  • 被引用被引用:1
  • 點閱點閱:171
  • 評分評分:
  • 下載下載:33
  • 收藏至我的研究室書目清單書目收藏:0
左心室輔助器(LVADs)至1986年開始研究關於血液方面的理論。大部份研究結果指出血液是屬於一種有黏滯性的牛頓流體。由於這個原則,科學家一直進行很多實驗與分析,他們已經成功的發展出許多種左心室輔助器(LVADs)。但是由於血液的複雜現象,在進行生物體移植之後,左心室輔助器的所能持續使用的時間對研究者仍然是一個很大的問題。在我們的研究過程中,血液被塑造為一種非牛頓黏性不恆定的流體並且被視為一個變性的函數。為了刺激血流的hemodynamic 的特性,Fluent (流體力學)軟體與有限元法一起被利用來分析三維的雷諾茲平均的Navier-Stokes方程式。我們著重於區分牛頓的和非牛頓流動之間的剪應力差別。這些分析結果將提供更好的參數,優化左心室輔助器(LVADs)外殼的形狀,葉輪以其他部份,從而增加設備的耐久性。

關鍵字︰ LVADs,非牛頓定律,剪應力,流體力學
Left Ventricular Assistant Devices (LVADs) have been researching since 1986 based on many various theories about blood. Most of studies recognized that blood belongs to type of Newtonian fluid with constant viscosity. With this principle, scientists carried out many experiments, analysis and succeeded in manufacturing several kinds of LVADs. However, because of complex phenomenon of blood, duration of these devices after implanting into living organism is still big problem with researchers. In our research, blood was modeled as Non-Newtonian fluid whose viscosity is not constant, but be a function of deformation. Fluent software with finite element methods is utilized to simulate the hemodynamic characteristics of blood flow and analyze the flow. We focus on how different between Newtonian fluid and Non-Newtonian one The study found that Non-Newton fluid gave more precise results and was successful in increasing head pressure of device to larger than 120 mmHg (arterial blood pressure). These analysis results will provide better parameters to optimize the shape of casing, impeller as well as other parts of LVADs and therefore increasing the durability of devices.

Keywords:LVADs, Non-Newtonian, shear stress
TABLE OF CONTENTS

Chapter 1 Introduction 1
1.1 Basic knowledge about natural heart 1
1.1.1 Basic concepts 1
1.1.2 The Clinical need 3
1.2 A brief introduction about artificial heart 4
1.2.1 Jarvik-7 Total Artificial Heart 4
1.2.2 Pulsatile Assistant Devices 6
1.2.3 Non-pulsatile Ventricle Assistant Devices 7
1.2.4 Non-contact magnetic bearings micro pump 8
1.3 Determine the research direction 9
1.3.1 Composition and Rheology of Blood 9
1.3.2 Hemolysis 10
1.3.3 Platelet Activation 11
1.3.4 Thrombosis and the Coagulation Cascade 12
1.3.5 Direction for current research 12
Chapter 2 Methods 13
2.1 Governing equations 13
2.2 Turbulence model 13
2.3 Computational Fluid Dynamics using Fluent 16
2.3.1 Introduction to FLUENT 16
2.3.1.1 Program Structure 16
2.3.1.2 Program Capabilities 19
2.3.2 Apply Fluent for solving the Non-Newtonian problem 20
2.3.2.1 Non-Newtonian Fluid 20
2.3.3.2 Power law for Non-Newtonian Viscosity 21
2.3.3.3 The Carreau Model for Pseudo-Plastics 21
2.3.3.4 Cross Model 22
Chapter 3 Results and Discussions 23
3.1 Physical model 23
3.1.1 Impeller Model 23
3.1.2 Casing Model 31
3.2 Simulation model 35
3.2.1 Impeller Model built in CFX 35
3.2.2 Casing Model built in ANSYS CFX 36
3.3 Flow analysis 38
3.3.1 Assumption of blood 38
3.3.2 Flow analysis results with Power law for Non-Newtonian Viscosity 39
3.3.3 Flow analysis results with The Carreau Model 50
3.3.4 Flow analysis results with The Cross Model 62
3.4 Discussions 73
Chapter 4 Conclusions 77
4.1 Flow analysis results with Newtonian theory 77
4.2 Compare analysis results between Newtonian and Non-Newtonian model 87
4.3 Conclusions 92
Chapter 5 Future work 95
REFERENCES 96
REFERENCES

1.http://en.wikipedia.org/wiki/Heart

2.Poulter N. Coronary heart disease is a multifactor disease. Am J Hypertens. 1999; 12(10 Pt 2): 92S-95S.

3.Harper AM, Rosendale JD, McBride MA, Cherikh WS, Ellison MD. Clinical Transplants. 1998:73-90.

4.Taylor DO, Edwards LB, Boucek MM, Trulock EP, Keck BM, Hertz MI. The registry of the international society for heart and lung transplantation: Twenty-first official adult heart transplant report – 2004. J Heart Lung Transplantation. 2004; 23(7): 796-803.

5.Howard RJ Schold JD, Cornell DL. A 10-year analysis of organ donation after cardiac death in the United States. Transplantation. 2005; 80(5):564-8.

6.Bove AA, Kashem A, Cross RC, Wald J, Furukama S, Berman GO, McClurken JB, Eisen HJ. Factors affecting survival after heart transplantation: Comparison of pre- ad post-1999 listing protocols. J Heart Lung Transplant. 2006; 25(1):42-7.

7.El-Banayosy A, Arusoglu L, Kizner L, Tenderich G, Minami K, Inoue K, Korfer R. Novacor left ventricular assist system versus Heartmate vented electric left ventricular prospective study. J Thorac Cardiovasc Surg. 2000; 119(3):581-7.

8.Mann DL, Willerson JT. Left ventricular assist devices and the failing heart: a bridge to recovery, a permanent assist device, or a bridge too far? Circulation. 1998; 98(22):2367-9.

9.Pennington DG, Oaks TE, Lohmann DP. Permanent ventricular assist device support versus cardiac transplantation. Ann Thoac Surg. 1999; 68(2):729-33.

10.Trevor Arnoult Snyder, Preclinical Biocompatibility Assessment of Cardiovascular Devices. University of Pittsburgh Ph. D Dissertation, 2006.

11.Cooley DA. The total artificial heart. Nature Med. 2003; 9(1): 108-111.

12.Joyce LD, DeVries WC, Hastings WL, Olsen DB, Jarvik RK, Kolff WJ. Response of the human body to the first permanent implant of the Jarvik-7 total artificial heart. Transact Amer Soc Artif Intern Organ. 1983; 29:81-5.

13.Burns GL. Infections associated with implanted blood pumps. Int J Artif Organs. 1993; 16(11):771-6.

14.Dowling RD, Gray Jr LA, Etoch SW, Laks H, Marelli D, Samuels L, Entwistle J, Couper G, Vlahakes GJ, Frazier OH, Hetzer R. Initial experience with the Abiocor implantable replacement heart system. J Thorac Cardiovasc Surg. 2004; 127(1):131-141.

15.FDA Centerfor Devices and Radiological Health, Medical Devices Advisory Committee, Circulatory Systems Device Panel Meeting, Gaithersburg, Md June 23rd, 2005. www.fda.gov/ohrms/dockets/ac/05/transcripts/2005-4149t2.htm

16.Starzl TE, Weil III R, Iwatsuki S. FK 506 for human liver, kidney and pancreas transplantation. Lancet. 1989; 2:1000-4.

17.Todo S, Fung JJ, Starzl TE. Liver, kidney, and thoracic organ transplantation under FK 506. Ann Surg. 1990; 212:295-305.

18.Hampton CR, Verrier ED. Systemic consequences of ventricular assist devieces: Alterations of coagulation, immune function, inflammation, and the neuroendocrine system. Atif Organ. 2002; 26(11):902-8.

19.Gross DR. Concerning thromboembolism associated with left ventricular assist devices Cardiovasc Res. 1999; 42(1):45-7.

20.Lutwick LI, Vaghjimal A, Connolly MW. Postcardiac surgery infections. Crit Care Clin. 1998; 14(2):221-50.

21.Chinn R, Dembitsky W, Waton L, Chillcott S, Stahovich M, Rasmusson B, Pagani F. Multicenter experience: Prevention and management of left ventricular assist device infections. ASAIO J. 2005; 51(4):461-70.

22.Dowling RD, Park SJ, Pagani FD, Tector AJ, Naka Y, Icenogle TB, Poirier VL, Frazier OH, Heartmat VE LVAS design enhancements and its impact on device reliability. Euro J Cardiothorac Surg. 2004; 25(6):958-63.

23.Wheeldon DR, LaForge DH, Lee J, Jansen PGM, Jassawalla JS, Portner PM. Novacor left ventricular assist system long-term performance: Comparison of clinical experience with demonstrated in vitro reliability. ASAIO J. 2002; 48(5):546-51.

24.Farrar DJ. The thoratec ventricular assist device; a paracorporeal pump for treating acute and chronic heart failure. Semin Thorac Cardiovasc Surg. 2000; 12(3):243-50.

25.Guyton AC, Hall JE. Textbook of medical physiology. 10th ed. Philadelphia: Saunders; 2000.

26.Saladin KS. Anatomy & physiology: the unity of form and function. 2nd ed. Boston: McGraw-Hill; 2000.

27.Chien S, Usami, Taylor HM, Lundberg JL Gregersen MI. Effects of hematocrit and plasma proteins on human blood rheology at low shear rates. J Appl Physiol 1966; 21(1):81-7.

28.Paut O, Bissonnette B. Effects of temperature and haematocrit on the relationships between blood flow velocity and blood flow in a vessel of fixed diameter. Br J Anaesth 2002; 88(2): 277-9.

29.Walburn FJ, Schneck DJ. A constitutive equation for whole human blood. Biorheology 1976; 13(3):201-10.

30.Thurston GB. Viscoelasticity of human blood. Biophys J 1972; 12(9):1205-17.

31.Deutsch S, Phillips WM. An interpretation of low strain rate blood viscosity measurements: a continuum approach. Biorheology 1976; 13(5):297-307.

32.Mizuno T, Tsukiya T, Taenaka Y, Tatsumi E, Nishinaka T, Ohnishi H, et al. Ultrastructural alterations in red blood cell membranes exposed to shear stress. Asaio J 2002; 48(6):668-70.

33.Blackshear PL, Jr., Dorman FD, Steinbach JH. Some Mechanical Effects That Influence Hemolysis. Trans Am Soc Artif Intern Organs 1965; 11:112-7.

34.Blackshear PL, Jr., Dorman FD, Steibach JH, Maybach EJ, Singh A, Collingham RE. Shear, wall interaction and hemolysis. Trans Am Soc Artif Intern Organs 1966; 12; 113-20.

35.Bernstein EF, Blackshear PL, Jr., Keller KH. Factors influencing erythrocyte destruction in artificial organs. Am J Surg 1967; 114(1):126-38.

36.Blackshear PL, Jr., Forstrom RJ, Dorman FD, Voss GO. Effect of flow on cells near walls. Fed Proc 1971; 30(5); 1600-11.

37.Reul H, Talukler N, Muller EW. Fluid mechanics of the natural mitral valve. Angeilogie 1986; 38(8):81-97.

38.Umezu M, Fujimasu, H., Yamada, T., Fijimoto, T., Ranakawake, M., Nogawa, A., and Kijima T. Fluid Dynamic Investigation of Mechanical Blood Hemolysis. Heart Replacement: The 5th International Symposium on Artificial Heart and Assist Devices 1995; 5:327-335.

39.Kingsbury C, Kafesjian R, Guo G, Adparvar P, Unger J, Quijano RC, et al. Cavitation threshold with respect to dP/dt: evaluation in 29 mm bileaflet, pyrolitic carbon heart valves. Int J Artif Organs 1993; 16(7): 515-20.

40.Sutera SP, Croce PA, Mehrjiardi M. Hemolysis and subhemolytic alterations of human RBC induced by turbulent shear flow. Trans Am Soc Artif Intern Organs 1072; 18(0):335-41, 347.

41.Samuel J. Hund. Hemodynamic design of optimization of a ventricular cannula: Evaluation and Implementation of Objective Functions. University of Pittsburgh MS Thesis, 2006.

42.Abrams C, and Lawrence, F.B. Platelet Signal Transduction. In: Coleman RW, Hirsh, J., Marder, V.J., Clowes, A.W., amd George, J.N., editor. Hemostasis and Thrombosis: Basic Principles & Clinical Practice. 4th ed: Lipponcott, Williams, and Wilkins; 2001. p. 541-559.

43.Tandon P, Diamond SL. Hydrodynamic effects and receptor interactions of platelets and their aggregates in linear shear flow. Biophys J 1997; 73(5):2819-35.

44.Warsi Z. U. A. Fluid Dynamics: Theoretical and Computational Approaches. 2th ed. Boca Raton, London, New York, Washington (DC): CRC Press; 1999. p. 13, p.29-30.

45.Launder BE, Spalding DB. The numerical computation o turbulent flows. Comp Meth App Mech Eng 1974; p. 3, p. 269-289.

46.Hsu C. H. Flow study on a newly developed impeller for a left ventricular assist device. J Artif Organs 2003; 6:92-100.

47.Fluent 6.2 User’s Guide. Fluent, Inc, 2005.

48.Andreas Alexandrou, Principles of Fluid Mechanics. International Edition, Prentice-Hall, Inc, 2001.

49.http://en.wikipedia.org/wiki/Impeller

50.Dale B. Andrews. Lawrence Pumps Inc, Jan 2005. Vol.2_iss1. URL: http://www.lawrencepumps.com/newsletter/news_v02_i1_jan05.html

51.Chi-Chen Chang, Flow and performance study on newly developed impeller for a left ventricular assistant device. Southern Taiwan University of Technology M.S. Thesis, 2006.

52.Engineers EDGE, 2007. URL: http://www.engineersedge.com/pumps/centrifugal_pump.htm

53.Hsiang-Cheng Wan, Flow and performance study on centrifugal pump for a left ventricular assistant device. Southern Taiwan University of Technology, M.S. Thesis 2007.

54.Cutnell, John & Johnson, Kenneth. Physics, Fourth Edition. Wiley, 1998: 308.

55.Prof. Ashim Datta, Heat Loss in the Carotid Artery During Selective Brain Cooling in Humans, Final Project Report, May 5, 2006.

56.Shewaferaw S. Shibeshi, William E. Collins, The Rheology of Blood Flow in a Branched Arterial System. Department of Physics and Astronomy, Howard University, Washington, DC 20059, USA, 2005.

57.Tillmann, W., Reul, Herold, M., Bruss, K.H. and Von, J., In Vitro Wall Shear Measurement at Aortic Valve Prosthess J. Biomechanical.

58.URL: http://en.wikipedia.org/wiki/Blood_pressure
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 許嘉猷。1987。<台灣的階級結構>,《中國社會學刊》,第十一期。
2. 彭小妍。1994。<百無禁忌──解嚴後小說面面觀>,《文訊》「文學新生代專輯」(1994年2月)。
3. 蕭新煌。1986。<當代知識分子的「鄉土意識」--社會學的考察>,《中國論壇》,二百六十五期。
4. 劉維公。2001。<何謂生活風格──論生活風格的社會理論意涵>,《當代》第一六八期(2001年8月)。
5. 劉紀蕙。2000a。<《中外文學》之本土轉向>,《中外文學》第二十八卷八期。
6. 葉啟政。1985。<現代大眾文化精緻化的條件>,《國魂》,四百八十期。
7. 黃海鳴。1995。<本土意識、文化認同與台灣當代藝術之脈動>,《藝術家》,二百三十八期。
8. 徐秋玲、林振春。1993。<台灣地區文化工業的檢證-以文學部門為主分析與解讀>,《思與言》,三十一卷一期。
9. 邱彥彬。2002。<「記憶失控錯置的擬相」:李昂《自傳の小說》中的記憶與救贖>,《中外文學》,第三十卷八期(2002年1月)。
10. 李碧涵。1994。<台灣地區後工業轉型之國家與社會>,《台灣大學中山學術論叢》第12期。
11. 羊文漪。1995。<他者的超越──台灣當代藝術的轉折與再造>,《藝術家》,二百三十八期。
12. 王俐容。2005。<文化政策中的經濟論述:從菁英文化到文化經濟>,《文化研究》創刊號(2005年9月)。