跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/04 16:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭如君
研究生(外文):Ju-chun Cheng
論文名稱:ACP-93誘發人類大腸癌細胞凋亡及增殖抑制作用的機轉:CDC2和MAP激酶的角色
論文名稱(外文):Mechanisms of apoptosis and proliferation inhibition by ACP-93 in human colon cancer cells: Roles of CDC2 and MAP kinases
指導教授:趙瑞益趙瑞益引用關係
指導教授(外文):Jui-I Chao
學位類別:碩士
校院名稱:慈濟大學
系所名稱:藥理暨毒理學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
畢業學年度:95
語文別:中文
論文頁數:54
中文關鍵詞:MAP激酶CDC2增殖抑制細胞凋亡大腸癌
外文關鍵詞:MAP kinasesCDC2proliferation inhibitionapoptosishuman colon cancer cells
相關次數:
  • 被引用被引用:0
  • 點閱點閱:368
  • 評分評分:
  • 下載下載:46
  • 收藏至我的研究室書目清單書目收藏:0
UK-1是一種萃取自鏈黴菌的天然產物,具有抗癌活性。在本篇研究中,我們探討一種新的UK-1衍生物,稱為ACP-93的抗癌活性及機制。人類大腸癌細胞株比其他癌細胞株對ACP-93的細胞毒殺作用較為敏感,將大腸癌RKO細胞以6-24 �嵱 ACP-93處理24小時後,發現隨著藥物處理濃度的提高,ACP-93誘發細胞毒性及細胞週期停滯的現象也隨之上升,ACP-93增加G2/M期並活化CDC2 (threonine-161)蛋白;以CDC2的抑制劑處理,會增加ACP-93所造成的細胞毒性。此外,ACP-93誘發RKO細胞中caspase-3的活化,並造成細胞凋亡。ACP-93增加ERK、p38及JNK蛋白的磷酸化,以ERK的抑制劑PD98059處理,可加強ACP-93所造成的細胞毒性及活化態caspase-3蛋白的含量。相反地,專一性的p38抑制劑SB202190作用時,則可抑制ACP-93所誘發的細胞死亡與caspase-3的活化,然而,以SP600125抑制JNK並不會影響ACP-93所造成的細胞死亡。有趣地,隨著ACP-93濃度的增加,RKO細胞中含氧自由基的產生也隨之增加。若以維生素C處理則可以減少ACP-93所產生的含氧自由基,再者抗氧化劑N-acetylcysteine會顯著地降低ACP-93所造成的細胞毒性。綜合以上結果,我們發現ACP-93是一種有潛力的新合成抗癌藥物,可誘發人類大腸癌細胞週期的停滯及細胞的凋亡,而p38與ERK/CDC2的活化,可扮演正反調控ACP-93所誘發的細胞凋亡,我們也推測含氧自由基的產生參與ACP-93所誘發的細胞凋亡。
UK-1, a natural product isolated from Streptomyces sp, exerts antitumor activity. A new synthetic compound derived from UK-1, ACP-93, was investigated in this study for its anticancer effects and mechanisms. The human colon cancer cell line was more sensitive to the cytotoxicity of ACP-93 than other cancer cell lines. Treatment with 6-24 μM ACP-93 for 24 h induced cytotoxicity and cell cycle arrest via a concentration-dependent manner in RKO colon cancer cells. The fractions of G2/M phases and the protein levels of phospho-CDC2 (threonine-161) were elevated by ACP-93. Treatment with the CDC2 inhibitors increased the cytotoxicity in the ACP-93-treated cells. Moreover, ACP-93 caused the activation of caspase-3 and the induction of apoptosis in RKO cells. The phosphorylation of ERK, p38, and JNK were increased by ACP-93. An ERK inhibitor, PD98059, enhanced the cytotoxicity and increased the active caspase-3 protein levels in the ACP-93-exposed cells. In contrast, a specific p38 inhibitor, SB202190, suppressed the cell death and the activation of caspase-3 in the ACP-93-treated cells. However, the inhibition of JNK by SP600125 did not alter the cell death following treatment with ACP-93. Interestingly, ACP-93 increased the production of reactive oxygen species (ROS) via a concentration-dependent manner in RKO cells. Treatment with vitamin C reduced the ROS generation induced by ACP-93. Furthermore, antioxidant N-acetylcysteine significantly reduced the cytotoxicity in the ACP-93-treated cells. Together, our results suggest that ACP-93 may be a potential anticancer drug, which induces cell cycle arrest and apoptosis in colon cancer cells. The activation of p38 and ERK/CDC2 by ACP-93 exhibits oppositive roles on the regulation of apoptosis. Our data also suggest that the ROS generation by ACP-93 may be involved in the induction of apoptosis.
目錄 頁
目錄........................................................................Ⅰ
圖目錄......................................................................Ⅲ
中英文專有名詞對照表........................................................Ⅳ
中文摘要....................................................................Ⅴ
英文摘要....................................................................Ⅵ
文獻回顧....................................................................1
一、UK-1的衍生物及抗癌活性..............................................1
二、細胞週期............................................................1
三、CDKs/cyclins與細胞週期的調控........................................2
四、細胞凋亡............................................................3
五、caspases與細胞凋亡的調控............................................3
六、有絲抗原蛋白活化激酶之簡介..........................................4
七、有絲抗原蛋白活化激酶與細胞凋亡的調控................................5
八、含氧自由基與細胞凋亡之關係..........................................5
九、研究動機............................................................6
研究材料與方法..............................................................7
一、化學藥品與抗體..........................................................7
二、細胞培養(Cell culture...................................................7
三、細胞毒性分析(Cytotoxicity assay.........................................8
四、細胞凋亡分析(Apoptosis assay............................................8
五、細胞生長分析(Cell growth assay).........................................8
六、細胞週期分析(Cell cycle analysis).......................................9
七、西方墨點法(Western blot)................................................9
八、含氧自由基含量分析(ROS measurement )....................................10
九、間接免疫螢光分析(Indirect immunofluorescence)...........................11
十 共軛焦顯微鏡觀察(Confocal microscopy)....................................12
十一 統計與數據分析(Biostatistics and data analysis)........................12
結果........................................................................13
一、ACP-93誘發不同人類癌細胞之細胞毒性......................................13
二、ACP-93誘發大腸癌細胞生長的抑制及細胞週期的停滯..........................13
三、抑制CDC2活性會促進ACP-93對大腸癌細胞的毒殺作用..........................13
四、ACP-93誘發caspase-3活化及細胞凋亡.......................................14
五、ACP-93誘發有絲抗原活化蛋白激酶的活化....................................14
六、p38激酶與ERK正反調控ACP-93所造成的大腸癌細胞死亡........................15
七、含氧自由基參與ACP-93所誘發大腸癌細胞的死亡..............................15
討論........................................................................17
一、ACP-93誘發人類癌細胞的生長抑制及細胞凋亡................................17
二、CDC2參與ACP-93所誘發細胞死亡............................................17
三、ERK與p38激酶相反調控ACP-93所誘發的細胞凋亡..............................17
四、含氧自由基參與ACP-93所誘發的細胞死亡....................................18
五、總結....................................................................19
參考文獻....................................................................20




圖目錄 頁

圖一、ACP-93對不同人類癌細胞之存活率的影響...................................27
圖二、ACP-93誘發細胞生長抑制................................................ 28
圖三、ACP-93誘發大腸癌細胞G2/M期細胞增加.....................................29
圖四、ACP-93誘發大腸癌細胞中磷酸化CDC2蛋白的表達.............................30
圖五、CDC2抑制劑加強ACP-93所誘發大腸癌細胞的毒性.............................31
圖六、ACP-93誘發大腸癌細胞中caspase-3的活化..................................32
圖七、ACP-93造成細胞凋亡的數目...............................................33
圖八、ACP-93誘發磷酸化ERK、p38及JNK蛋白的表達................................34
圖九、ACP-93誘發磷酸化ERK蛋白增加並聚集於細胞核..............................35
圖十、ACP-93誘發磷酸化p38蛋白增加並聚集於細胞核..............................36
圖十一、ACP-93誘發磷酸化JNK蛋白增加並聚集於細胞核............................37
圖十二、MAP kinases 抑制劑對ACP-93所誘發細胞毒性之影響.......................38
圖十三、PD98059與SB202190對ACP-93造成caspase-3蛋白活化的影響.................39
圖十四、ACP-93誘發RKO大腸癌細胞內含氧自由基量的增加..........................40
圖十五、維生素C降低ACP-93所誘發的含氧自由基的產生............................41
圖十六、N-acetylcysteine降低ACP-93誘發大腸癌細胞的毒性.......................42
圖十七、ACP-93誘發大腸癌細胞凋亡的機轉圖:CDC2、ERK及p38與自由基的角色.......43
附圖一、UK-1化學結構.........................................................44
附圖二、IC50計算方法.........................................................45
附圖三、MAP kinases 抑制劑之化學結構.........................................46
參考文獻
Arnoult D, Gaume B, Karbowski M, Sharpe JC, Cecconi F, Youle RJ (2003) Mitochondrial release of AIF and EndoG requires caspase activation downstream of Bax/Bak-mediated permeabilization. Embo J 22:4385-4399.
Benhar M, Engelberg D, Levitzki A (2002) ROS, stress-activated kinases and stress signaling in cancer. EMBO Rep 3:420-425.
Bonni A, Brunet A, West AE, Datta SR, Takasu MA, Greenberg ME (1999) Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science 286:1358-1362.
Bornfeldt KE (2003) The cyclin-dependent kinase pathway moves forward. Circ Res 92:345-347.
Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu SS (2004) Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol 287:C817-833.
Brubacher JL, Bols NC (2001) Chemically de-acetylated 2',7'-dichlorodihydrofluorescein diacetate as a probe of respiratory burst activity in mononuclear phagocytes. J Immunol Methods 251:81-91.
Choudhury S, Zhang R, Frenkel K, Kawamori T, Chung FL, Roy R (2003) Evidence of alterations in base excision repair of oxidative DNA damage during spontaneous hepatocarcinogenesis in Long Evans Cinnamon rats. Cancer Res 63:7704-7707.
Cory S, Adams JM (2002) The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2:647-656.
Davis RJ (2000) Signal transduction by the JNK group of MAP kinases. Cell 103:239-252.
Davis W, Jr., Ronai Z, Tew KD (2001) Cellular thiols and reactive oxygen species in drug-induced apoptosis. J Pharmacol Exp Ther 296:1-6.
Dhanasekaran DN, Kashef K, Lee CM, Xu H, Reddy EP (2007) Scaffold proteins of MAP-kinase modules. Oncogene 26:3185-3202.
DiPaola RS (2002) To arrest or not to G(2)-M Cell-cycle arrest: commentary re: A. K. Tyagi et al., Silibinin strongly synergizes human prostate carcinoma DU145 cells to doxorubicin-induced growth inhibition, G(2)-M arrest, and apoptosis. Clin. Cancer Res., 8: 3512-3519, 2002. Clin Cancer Res 8:3311-3314.
Eimon PM, Kratz E, Varfolomeev E, Hymowitz SG, Stern H, Zha J, Ashkenazi A (2006) Delineation of the cell-extrinsic apoptosis pathway in the zebrafish. Cell Death Differ 13:1619-1630.
England K, Driscoll CO, Cotter TG (2006) ROS and protein oxidation in early stages of cytotoxic drug induced apoptosis. Free Radic Res 40:1124-1137.
Fink SL, Cookson BT (2005) Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun 73:1907-1916.
Finucane DM, Bossy-Wetzel E, Waterhouse NJ, Cotter TG, Green DR (1999) Bax-induced caspase activation and apoptosis via cytochrome c release from mitochondria is inhibitable by Bcl-xL. J Biol Chem 274:2225-2233.
Gould KL, Moreno S, Owen DJ, Sazer S, Nurse P (1991) Phosphorylation at Thr167 is required for Schizosaccharomyces pombe p34cdc2 function. EMBO J 10:3297-3309.
Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305:626-629.
Gupta S, Campbell D, Derijard B, Davis RJ (1995) Transcription factor ATF2 regulation by the JNK signal transduction pathway. Science 267:389-393.
Hartwell LH, Weinert TA (1989) Checkpoints: controls that ensure the order of cell cycle events. Science 246:629-634.
Hervouet E, Simonnet H, Godinot C (2007) Mitochondria and reactive oxygen species in renal cancer. Biochimie.
Hibi M, Lin A, Smeal T, Minden A, Karin M (1993) Identification of an oncoprotein- and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain. Genes Dev 7:2135-2148.
Huang ST, Hsei IJ, Chen C (2006) Synthesis and anticancer evaluation of bis(benzimidazoles), bis(benzoxazoles), and benzothiazoles. Bioorg Med Chem 14:6106-6119.
Hwang A, Muschel RJ (1998) Radiation and the G2 phase of the cell cycle. Radiat Res 150:S52-59.
Israels ED, Israels LG (2000) The cell cycle. Oncologist 5:510-513.
Jabs T (1999) Reactive oxygen intermediates as mediators of programmed cell death in plants and animals. Biochem Pharmacol 57:231-245.
Jing Y, Dai J, Chalmers-Redman RME, Tatton WG, Waxman S (1999) Arsenic trioxide selectively induces acute promyelocytic leukemia cell apoptosis via a hydrogen peroxide-dependent pathway. Blood 94:2102-2111.
Johnson GL, Lapadat R (2002) Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298:1911-1912.
Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239-257.
Klein JA, Ackerman SL (2003) Oxidative stress, cell cycle, and neurodegeneration. J Clin Invest 111:785-793.
Kong Q, Lillehei KO (1998) Antioxidant inhibitors for cancer therapy. Med Hypotheses 51:405-409.
Kong Q, Beel JA, Lillehei KO (2000) A threshold concept for cancer therapy. Med Hypotheses 55:29-35.
Kroemer G, Reed JC (2000) Mitochondrial control of cell death. Nat Med 6:513-519.
Kumar D, Jacob MR, Reynolds MB, Kerwin SM (2002) Synthesis and evaluation of anticancer benzoxazoles and benzimidazoles related to UK-1. Bioorg Med Chem 10:3997-4004.
Kyriakis JM, Banerjee P, Nikolakaki E, Dai T, Rubie EA, Ahmad MF, Avruch J, Woodgett JR (1994) The stress-activated protein kinase subfamily of c-Jun kinases. Nature 369:156-160.
Liu X, Zou H, Slaughter C, Wang X (1997) DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 89:175-184.
Lorca T (1993) Control of cell division in eucaryotes. Pathol Biol (Paris) 41:260-267.
Malumbres M, Barbacid M (2001) To cycle or not to cycle: a critical decision in cancer. Nat Rev Cancer 1:222-231.
Malumbres M, Barbacid M (2007) Cell cycle kinases in cancer. Curr Opin Genet Dev 17:60-65.
Melov S (2000) Mitochondrial oxidative stress. Physiologic consequences and potential for a role in aging. Ann N Y Acad Sci 908:219-225.
Miller WH, Jr. (2002) Molecular targets of arsenic trioxide in malignant cells. Oncologist 7:14-19.
Nagata Y, Todokoro K (1999) Requirement of activation of JNK and p38 for environmental stress-induced erythroid differentiation and apoptosis and of inhibition of ERK for Apoptosis. Blood 94:853-863.
Namgung U, Xia Z (2000) Arsenite-induced apoptosis in cortical neurons is mediated by c-Jun N-terminal protein kinase 3 and p38 mitogen-activated protein kinase. J Neurosci 20:6442-6451.
Nemoto S, Xiang J, Huang S, Lin A (1998) Induction of apoptosis by SB202190 through inhibition of p38beta mitogen-activated protein kinase. J Biol Chem 273:16415-16420.
Newhouse K, Hsuan S-L, Chang SH, Cai B, Wang Y, Xia Z (2004) Rotenone-Induced Apoptosis is mediated by p38 and JNK MAP kinases in human dopaminergic SH-SY5Y cells. Toxicol Sci 79:137-146.
Nicholson DW, Thornberry NA (1997) Caspases: killer proteases. Trends Biochem Sci 22:299-306.
Nunez G, Benedict MA, Hu Y, Inohara N (1998) Caspases: the proteases of the apoptotic pathway. Oncogene 17:3237-3245.
Olson JM, Hallahan AR (2004) p38 MAP kinase: a convergence point in cancer therapy. Trends Mol Med 10:125-129.
Orton RJ, Sturm OE, Vyshemirsky V, Calder M, Gilbert DR, Kolch W (2005) Computational modelling of the receptor-tyrosine-kinase-activated MAPK pathway. Biochem J 392:249-261.
Park M-T, Choi J-A, Kim M-J, Um H-D, Bae S, Kang C-M, Cho C-K, Kang S, Chung HY, Lee Y-S, Lee S-J (2003) Suppression of extracellular signal-related kinase and activation of p38 MAPK are two critical events leading to caspase-8- and mitochondria-mediated cell death in phytosphingosine-treated human cancer cells. J Biol Chem 278:50624-50634.
Pelicano H, Carney D, Huang P (2004) ROS stress in cancer cells and therapeutic implications. Drug Resistance Updates 7:97.
Pelicano H, Feng L, Zhou Y, Carew JS, Hileman EO, Plunkett W, Keating MJ, Huang P (2003) Inhibition of Mitochondrial Respiration: A novel strategy to enhance drug-induced apoptosis in human leukemia cells by a reactive oxygen species-mediated mechanism. J Biol Chem 278:37832-37839.
Perry JA, Kornbluth S (2007) Cdc25 and Wee1: analogous opposites? Cell Div 2:12.
Petak I, Houghton JA (2001) Shared pathways: death receptors and cytotoxic drugs in cancer therapy. Pathol Oncol Res 7:95-106.
Petrosillo G, Ruggiero FM, Pistolese M, Paradies G (2004) Ca2+-induced reactive oxygen species production promotes cytochrome c release from rat liver mitochondria via mitochondrial permeability transition (MPT)-dependent and MPT-independent mechanisms: role of cardiolipin. J Biol Chem 279:53103-53108.
Pines J (1999) Four-dimensional control of the cell cycle. Nat Cell Biol 1:E73-79.
Porter AG, Janicke RU (1999) Emerging roles of caspase-3 in apoptosis. Cell Death Differ 6:99-104.
Raingeaud J, Whitmarsh AJ, Barrett T, Derijard B, Davis RJ (1996) MKK3- and MKK6-regulated gene expression is mediated by the p38 mitogen-activated protein kinase signal transduction pathway. Mol Cell Biol 16:1247-1255.
Raingeaud J, Gupta S, Rogers JS, Dickens M, Han J, Ulevitch RJ, Davis RJ (1995) Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. J Biol Chem 270:7420-7426.
Reddy MB, Clark L (2004) Iron, oxidative stress, and disease risk. Nutr Rev 62:120-124.
Rouse J, Cohen P, Trigon S, Morange M, Alonso-Llamazares A, Zamanillo D, Hunt T, Nebreda AR (1994) A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins. Cell 78:1027-1037.
Scandalios JG (2002) The rise of ROS. Trends Biochem Sci 27:483-486.
Sellers WR, Kaelin WG (1996) RB [corrected] as a modulator of transcription. Biochim Biophys Acta 1288:M1-5.
Shibata K, Kashiwada M, Ueki M, Taniguchi M (1993) UK-1, a novel cytotoxic metabolite from Streptomyces sp. 517-02. II. Structural elucidation. J Antibiot (Tokyo) 46:1095-1100.
Simon HU, Haj-Yehia A, Levi-Schaffer F (2000) Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 5:415-418.
Skulachev VP (2000) Mitochondria in the programmed death phenomena; a principle of biology: "it is better to die than to be wrong". IUBMB Life 49:365-373.
Sorger PK, Dobles M, Tournebize R, Hyman AA (1997) Coupling cell division and cell death to microtubule dynamics. Curr Opin Cell Biol 9:807-814.
Susin SA, Lorenzo HK, Zamzami N, Marzo I, Brenner C, Larochette N, Prevost MC, Alzari PM, Kroemer G (1999) Mitochondrial release of caspase-2 and -9 during the apoptotic process. J Exp Med 189:381-394.
Thannickal VJ, Day RM, Klinz SG, Bastien MC, Larios JM, Fanburg BL (2000) Ras-dependent and -independent regulation of reactive oxygen species by mitogenic growth factors and TGF-beta1. FASEB J 14:1741-1748.
Thorburn A (2004) Death receptor-induced cell killing. Cell Signal 16:139-144.
Tsang WP, Chau SP, Kong SK, Fung KP, Kwok TT (2003) Reactive oxygen species mediate doxorubicin induced p53-independent apoptosis. Life Sci 73:2047-2058.
Ueki M, Shibata K, Taniguchi M (1998) UK-1, a novel cytotoxic metabolite from Streptomyces sp. 517-02. IV. Antifungal action of methyl UK-1. J Antibiot (Tokyo) 51:883-885.
Villa P, Kaufmann SH, Earnshaw WC (1997) Caspases and caspase inhibitors. Trends Biochem Sci 22:388-393.
Wang BB, Maghami N, Goodlin VL, Smith PJ (2004) Critical structural motif for the catalytic inhibition of human topoisomerase II by UK-1 and analogs. Bioorg Med Chem Lett 14:3221-3226.
Wang Q, Luo W, Zhang W, Dai Z, Chen Y, Chen J (2007) Iron supplementation protects against lead-induced apoptosis through MAPK pathway in weanling rat cortex. Neurotoxicology.
White K, Steller H (1995) The control of apoptosis in Drosophila. Trends Cell Biol 5:74-78.
Zhang W, Liu HT (2002) MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res 12:9-18.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊