|
[1] 聶瑞軍RNA干擾(RNAi)及其應用. 生命科學趨勢2(1), 1-7 (2004). [2] 華友佳及肖華勝 microRNA研究進展. 生命科學 17(3), 1-4 (2005). [3] 秦峰松及楊崇林 小線蟲,大發現:Caenorhabditis elegans 在生命科學研究中的重要貢獻. 生命科學 18(5), 419-424 (2006). [4] Gupta, P. K. RNA interference – gene silencing by double-stranded RNA : The 2006 Nobel Prize for Physiology or Medicine. Current Science 91(11), 1443-1446 (2006). [5] Eddy, Sean R Noncoding RNA genes and the modern RNA world. Nature 2(12), 919-928 (2001). [6] Tomaru, Yasuhiro and Hayashizaki, Yoshihide Cancer research with non-coding RNA. Cancer Science 97(12), 1285-1290 (2006). [7] Finnegan, E. Jean and Matzke, Marjori A. The small RNA world. Journal of Cell Science 116(23), 4689-4693 (2003). [8] Elbashir, Sayda M., Lendeckel, Winfried and Tuschl, Thomas RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes & Development 15(2), 188-200 (2001). [9] Pasquinelli, AE, Reinhart, BJ and Slack, F et al. Conservation of the sequence and temporal expression of let-7 heterochronic RNA. Nature 408(6808), 86-89 (2000). [10] Reinhart, BJ and Bartel, DP Small RNAs correspond to centromere heterochromatic repeats. Science 297(5588), 1831 (2002). [11] Ambros, V, Lee, RC and Lavanway, A et al. MicroRNAs and other tiny endogenous RNAs in C. elegans. Current Biology 13(10), 807-818 (2003).96 [12] Lin, He and Gregory, J. Hannon MicroRNAs: small RNAs with a big role in gene regulation. Nature Reviews. Genetics 5(7), 522-531(2004). [13] Kim, V. Narry and Nam, Jin-Wu Genomics of microRNA. Trends in Genetics 22(3), 165-173 (2006). [14] Tang, Guiliang siRNA and miRNA: an insight into RISCs. Trends in Biochemical Sciences 30(2), 106-114 (2005). [15] Bompfünewerer, Athanasius F., Flamm, Christoph and Fried, Claudia et al. Evolutionary patterns of non-coding RNAs. Theory in Biosciences 123(4), 301-369 (2005). [16] Novina, Carl D. and Sharp, Phillip A. The RNAi revolution. Nature 430(6996), 161-164 (2004). [17] Kuwabara, T, Hsieh, J and Nakashima, K et al. A small modulatory dsRNA specifies the fate of adult neural stem cells. Cell 116(6), 779-93 (2004). [18] Kim, V. Narry Small RNAs: classification, biogenesis, and function. Molecules and Cells 19(1), 1-15 (2005). [19] Napoli, C, Lemieux, C and Jorgensen, R Introduction of a chimeric chalcone cynthase gen results in reversible co-suppression of homologo trans. The Plant Cell 2(4), 279-289 (1990). [20] Guo, S and Kemphues, KJ par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 81(4), 611-620 (1995). [21] Fire, A, Xu, S and Montgomery, MK et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669), 744-745 (1998). [22] Zamore, Phillip D., Tuschl, Thomas and Sharp, Phillip A. et al. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101(1), 25–33 (2000). [23] Abdelrahim, Maen, Safe, Stephen and Baker, Cheryl et al. RNAi and cancer: implications and applications. Journal of RNAi and Gene Silencing 2(1), 136-145 (2006). [24] Leung, Ray K.M. and Whittaker, Paul A. RNA interference: from gene silencing to gene-specific therapeutics. Pharmacology & Therapeutics 107(2), 222-239 (2005). [25] Kim, V. Narry RNA interference in functional genomics and medicine. Journal of Korean Medical Science 18(3), 309-318 (2003).97 [26] Rao, Meenakshi and Sockanathan, Shanthini Molecular mechanisms of RNAi: implications for development and disease. Birth Defects Research. Part C, Embryo today : reviews 75(1), 28-42 (2005). [27] Milhavet, Olliver, Gary, Devin S. and Mattson, Mark P. RNA interference in biology and medicine. Pharmacological Reviews 55(4), 629-648 (2003). [28] Kennerdell, JR and Carthew, RW Heritable gene silencing in Drosophila using doublestranded RNA. Nature Biotechnology 18(8), 896-898 (2000). [29] Hammond, SM, Caudy, AA and Hannon, GJ Post-transcriptional gene silencing by double-stranded RNA. Nature Reviews. Genetics 2(2), 110-119 (2001). [30] Sharp, Phillip A. RNA interference—2001. Genes & Development 15(5), 485-490 (2001). [31] Kooter, JM, Matzke, MA and Meyer, P Listening to the silent genes: transgene silencing, gene regulation and pathogen control. Trends in Plant Science 4(9), 340-347 (1999). [32] Kuwabara, PE and Coulson, A RNAi--prospects for a general technique for determining gene function. Parasitology Today (Personal ed.) 16(8), 347-349 (2000). [33] Lee, RC, Feinbaum, RL and Ambros, V The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5), 843-854 (1993). [34] Reinhart, Brenda J., Slack, Frank J. and Basson, Michael The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403(6772), 901-905 (2000). [35] Wienholds, Erno and Plasterk, Ronald H.A. MicroRNA function in animal development. FEBS Letters 579(26), 5911-5922 (2005). [36] Miska, Eric A How microRNAs control cell division, differentiation and death. Current Opinion in Genetics & Development 15(5), 563-568 (2005). [37] Kim, V. Narry MicroRNA biogenesis: coordinated cropping and dicing. Nature Reviews. Molecular Cell Biology 6(5), 376-385 (2005). [38] International Human Genome Sequencing Consortium Initial sequencing and analysis of the human genome. Nature 409(6822), 98 860-921 (2001). [39] International Human Genome Sequencing Consortium Finishing the euchromatic sequence of the human genome. Nature 431(7011), 931-945 (2004). [40] M, Gardiner-Garden and M, Frommer CpG islands in vertebrate genomes. Journal of Molecular Biology 196(2), 261-282 (1987). [41] Cooper, DN and Krawczak, M Cytosine methylation and the fate of CpG dinucleotides in vertebrate genomes. Human Genetics 83(2), 181-188 (1989). [42] Feinberg, Andrew P. Methylation meets genomics. Nature Genetics 27(1), 9-10 (2001). [43] Jones, PA and Takai, D The role of DNA methylation in mammalian epigenetics. Science 293(5532), 1068-1070 (2001). [44] Esteller, M, Corn, PG and Baylin, SB et al. A gene hypermethylation profile of human cancer. Cancer Research 61(8), 3225-3229 (2001). [45] Free, A, Wakefield, RI and Smith, BO et al. DNA recognition by the methyl-CpG binding domain of MeCP2. The Journal of Biological Chemistry 276(5), 3353-3360 (2001). [46] Jones, Peter A. and Laird, Peter W. Cancer epigenetics comes of age. Nature Genetics 21(2),163-167 (1999). [47] Das, Partha M. and Singal, Rakesh DNA methylation and cancer. Journal of Clinical Oncology 22(22), 4632-4642 (2004). [48] Tycko, Benjamin Epigenetic gene silencing in cancer. The Journal of Clinical Investigation 105(4), 401-407 (2000). [49] Myohanen, SK, Baylin, SB and Herman, JG Hypermethylation can selectively silence individual p16ink4A alleles in neoplasia. Cancer Research 58(4), 591-593 (1998). [50] Yang, Bin, Guo, Mingzhou and Herman, James G. et al. Aberrant promoter methylation profiles of tumor suppressor genes in hepatocellular carcinoma. American Journal of Pathology 163(3), 1101-1107 (2003). [51] Bao, Ning, Lye, Khar-Wai and Barton, M. Kathryn MicroRNA binding sites in Arabidopsis class III HD-ZIP mRNAs are required for methylation of the template chromosome. Developmental Cell 7(5), 653-662 (2004). [52] Matzke, Marjori A. and Birchler, James A. RNAi-mediated 99 pathways in the nucleus. Nature Reviews. Genetics 6(1), 24-35 (2005). [53] Wynter, Coral V.A. The dialectics of cancer: a theory of the initiation and development of cancer through errors in RNAi. Medical Hypotheses 66(3), 612-635 (2006). [54] Ronemus, Michael and Martienssen, Rob RNA interference: methylation mystery. Nature 433(7025), 472-473 (2005). [55] Melquist, Stacey and Bender, Judith Transcription from an upstream promoter controls methylation signaling from an inverted repeat of endogenous genes in Arabidopsis. Genes & Development 17(16), 2036-2047 (2003). [56] Pontes, Olga, Li, Carey Fei and Nunes, Pedro Costa et al. The Arabidopsis chromatin-modifying nuclear siRNA pathway involves a nucleolar RNA processing center. Cell 126(1), 79-92 (2006). [57] Zhang, Xiaoyu, Yazaki, Junshi and Sundaresan, Ambika et al. Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126(6), 1189-1201 (2006). [58] Rodriguez,Antony, Griffiths-Jones, Sam and Ashurst, Jennifer L. et al. Identification of mammalian microRNA host genes and transcription units. Genome Research 14(10A), 1902-1910 (2004). [59] Griffiths-Jones, Sam, Grocock, Russell J. and Dongen, Stijn van et al. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Research 34(Database issue), D140-D144 (2006). [60] Yamashita, Riu, Suzuki, Yutaka and Wakaguri, Hiroyuki et al. DBTSS: database of human transcription start sites, progress report 2006. Nucleic Acids Research 34(Database issue), D86-D89 (2006). [61] Hinrichs, A. S., Karolchik, D. and Baertsch, R. et al. The UCSC genome browser database: update 2006. Nucleic Acids Research 34(Database issue), D590-D598 (2006). [62] Holstebroe, S. and Tommerup, N. A subset of miRNA genes are associated with CpG-islands. European Human Genetics Conference 2005 (2005). [63] Altschul, Stephen F., Gish, Warren and Miller, Webb et al. Basic local alignment search tool. Journal of Molecular Biology 215(3), 403-410 (1990). [64] Altschul, Stephen F., Madden, Thomas L. and Schäffer, 100 Alejandro A. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25(17), 3389-3402 (1997). [65] Korf, Ian, Yandell, Mark and Bedell Joseph BLAST. O’REILLY (2003). [66] Matys, V., Fricke, E. and Geffers, R. et al. TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Research 31(1), 374-378 (2003). [67] Nam, Jin-Wu, Shin, Ki-Roo and Han, Jinju et al. Human microRNA prediction through a probabilistic co-learning model of sequence and structure. Nucleic Acids Research 33(11), 3570-3581 (2005). [68] Yang, Liang Huai, Hsu, Wynne and Lee, Mong Li et al. Identification of microRNA precursors via SVM. Proceedings of 4th Asia-Pacific Bioinformatics Conference 267-276 (2006). [69] Weber, Michel J. New human and mouse microRNA genes found by homology search. The FEBS Journal 272(1), 59-73 (2005). [70] Altuvia, Yael, Landgraf, Pablo and Lithwick, Gila et al. Clustering and conservation patterns of human microRNAs. Nucleic Acids Research 33(8), 2697-2706 (2005). [71] Brown, James R. and Sanseau, Philippe A computational view of microRNAs and their targets. Drug Discovery Today 10(8), 595-601 (2005). [72] Hsu, Paul W.C., Huang, Hsien-Da and Hsu, Sheng-Da et al. miRNAMap: genomic maps of microRNA genes and their target genes in mammalian genomes. Nucleic Acids Research 34(Database issue), D135-D139 (2006). [73] Wang, Xiaowo, Zhang, Jing and Li, Fei et al. MicroRNA identification based on sequence and structure alignment. Bioinformatics (Oxford, England) 21(18), 3610-3614 (2005). [74] Alain, Sewer, Nicodème, Paul and Pablo, Landgraf et al. Identification of clustered microRNAs using an ab initio prediction method. BMC Bioinformatics 6(267), 1-15 (2005). [75] Bentwich, Isaac, Avniel, Amir and Karov, Yael et al. Identification of hundreds of conserved and nonconserved human microRNAs. Nature Genetics 37(7), 766-770 (2005). [76] Bentwich, Isaac Prediction and validation of microRNAs and their 101 targets. FEBS Letters 579(26), 5904-5910 (2005). [77] Hovsepian, Jeannette A. and Frenster, John H. RNA-induced melting of DNA during selective gene transcription, Molecular Biology of the Cell 13, suppl. 239a (2002). [78] Barone, F, Cellai, L and Matzeu, M et al. DNA, RNA and hybrid RNA-DNA oligomers of identical sequence: structural and dynamic differences. Biophysical Chemistry 86(1), 37-47 (2000). [79] Barbieri, CM, Li, TK and Guo, S et al. Aminoglycoside complexation with a DNA.RNA hybrid duplex: the thermodynamics of recognition and inhibition of RNA processing enzymes. Journal of the American Chemical Society 125(21), 6469-6477 (2003). [80] Sethupathy, Praveen, Corda, Benoit and Hatzigeorgiou, Artemis G. TarBase: A comprehensive database of experimentally supported animal microRNA targets. RNA 12(2), 192-197 (2006). [81] Wikipedia: http://en.wikipedia.org/wiki/Main_Page [82] National RNAi Core Facility: http://rnai.genmed.sinica.edu.tw/ch/ [83] International Human Genome Sequencing Consortium: http://www. genome.gov/ [84] NCBI: http://www.ncbi.nlm.nih.gov/ [85] miRBase: http://microrna.sanger.ac.uk/ [86] DBTSS: http://dbtss.hgc.jp/ [87] UCSC: http://genome.ucsc.edu/index.html?org=Human&db=hg17& hgsid=67297612 [88] 國科會國家高速電腦中心: http://www.nchc.org.tw/ [89] TRANSFAC: http://www.gene-regulation.com/pub/databases.html [90] EBI: http://www.ebi.ac.uk/ [91] TarBase: http://www.diana.pcbi.upenn.edu/tarbase.html
|