跳到主要內容

臺灣博碩士論文加值系統

(44.192.95.161) 您好!臺灣時間:2024/10/10 09:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡明成
研究生(外文):Ming-Cheng Tsai
論文名稱:探討人類miRNA基因和轉錄作用可能的關聯性
論文名稱(外文):The Probable Relationship Between Human miRNA Genes and Transcription
指導教授:吳家樂
指導教授(外文):wu jia le
學位類別:碩士
校院名稱:亞洲大學
系所名稱:生物資訊學系碩士班
學門:生命科學學門
學類:生物訊息學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:129
中文關鍵詞:CpG islands啟動子miRNA甲基化基因沉默
外文關鍵詞:CpG islandspromotermiRNAmethylationgene silencing
相關次數:
  • 被引用被引用:2
  • 點閱點閱:342
  • 評分評分:
  • 下載下載:60
  • 收藏至我的研究室書目清單書目收藏:0
MicroRNAs ( miRNAs )是長度約22 nt的微小調控RNAs,其源自於似髮夾型態的前驅miRNAs,並且藉由結合到標靶基因的mRNA來阻止其轉譯作用,扮演著基因調控的角色。
本研究中,首先試著去找出位於啟動子區域的miRNA基因,並搜尋與基因子位置與CpG islands有關的miRNA基因。發現miRNA基因中有高比率位於CpG islands的1000 bp之內(約16.0 %)。並發現有10個miRNA基因是位於起動子區域內。其次,本論文試著去預測成熟miRNA與啟動子標靶的可能性,發現有些標靶到的位置可能重疊轉錄因子結合位置。最後,利用 pre-miRNA候選者的預測方法,成功預測出的6個pre-miRNA候選者,與hsa-mir-566高度相似(相似度為63~83 %)。
因此,有鑒於這三方面的研究,推測這些miRNAs或許在CpG islands甲基化中扮演潛在的角色,牽涉到生長發育與癌症形成的過程。未來,in vitro或in vivo實驗是必須執行去檢驗上述之預測結果。也許某些與CpG islands和啟動子區域有關的miRNAs,未來將可能跟甲基化的自體調控作用有關。
MicroRNAs ( miRNAs ) are about 22 nucleotides long small regulatory RNAs produced from hairpin-like precursors, and suppressing translation of target genes by binding to their mRNA. For this reason, miRNAs play the role of gene regulation in disease and health. Upstream regions of genes are associated with transcription, and it is known that they could have one or many transcript start sites in eukaryotes, and are named promoter regions. CpG islands are typically common near transcription start sites in vertebrates, often associated with promoter regions, and some of which are hypermethylated in cancer .
First, we focused on identifying human miRNA genes that are located near CpG island regions or promoter regions as well. It is found that a subset of miRNA genes is CpG islands-associated, in which a highly significant proportion of miRNA genes ( 74 of 462, i.e. 16.0 % ) are located within 1000 bp of a CpG island. It is also found that 10 of 462 miRNA genes are located within promoter regions, 7 of 10 miRNA genes from promoter regions are associated with CpG islands. Second, we study the possible of mature miRNAs that could target promoter regions. It is found that some of the targeted sites could overlap TF-binding sites, showing mature miRNAs maybe affect transcription of coding genes. Third, we produced a new protocol of predicting pre-miRNA candidates from intron or intergenic regions. According to our study, we have confirmed that 5 of 6 pre-miRNA candidates are associated with CpG islands, but none of them are located within promoter regions. The 6 miRNA precursor (mature) candidates are highly similar to the pre-miRNA, hsa-mir-566, which have a sequence similarity ranged from 63 to 83 % ( 79 to 89 % ).
In summary our study suggesting that these miRNAs maybe have a potential role in CpG islands methylation, involving in development and carcinogenesis. In vitro or in vivo experiments are required to perform in order to verify these candidates as new miRNA genes. Fourthermore, it is suspected that miRNA genes close to or overlapping with CpG islands and within promoter regions could be involved in autoregulation of methylation.
謝詞………………………………………………………………………i
摘要………………………………………………………………………ii
Abstract…………………………………………………………………iii
圖目錄…………………………………………………………………vii
表目錄…………………………………………………………………ix
第一章 緒論……………………………………………………………1
第一節 研究背景……………………………………………………1
一、Non-coding RNA………………………………………………1
(一)coding與non-coding………………………………………1
(二)small ncRNA………………………………………………2
二、RNA interference………………………………………………3
(一)RNAi的發現史……………………………………………3
(二)RNAi的作用機制…………………………………………4
(三)RNAi的應用………………………………………………5
三、miRNA…………………………………………………………6
(一)miRNA生源論……………………………………………6
(二)miRNA的作用機制……………………………………7 iv
四、CpG 甲基化…………………………………………………8
第二節 研究動機………………………………………………10
ㄧ、miRNA可能返回細胞核內…………………………………10
二、miRNA基因的來源位置……………………………………11
第三節 研究目的…………………………………………………12
第二章 材料與方法…………………………………………………14
第一節 人類miRNA基因在基因組中的位置……………………14
ㄧ、分析概念與流程………………………………………………14
二、核酸序列資料庫………………………………………………15
三、核酸序列排比軟體……………………………………………17
第二節 人類成熟的miRNA標靶之位置…………………………18
ㄧ、分析概念與流程………………………………………………18
二、人類成熟的miRNA標靶啟動子序列與能量計算…………19
三、人類成熟的miRNA標靶轉錄因子結合位置………………19
四、啟動子序列中可能具有的轉錄因子結合位置………………20
第三節 預測新穎的人類miRNA基因……………………………21
一、預測概念與流程………………………………………………21
二、pri-miRNA二維結構的摺疊…………………………………22
三、pre-miRNA門檻值過濾與序列裁切…………………………22 v
四、與真實pre-miRNA及其ㄧ致性區段做序列相似度排比……23
五、候選者的挑選…………………………………………………25
第三章 研究結果……………………………………………………26
第一節 人類miRNA基因在基因組中的位置……………………26
ㄧ、人類miRNA基因的鄰近基因與CpG islands………………26
二、人類miRNA基因與啟動子區域……………………………27
第二節 人類成熟的miRNA標靶之位置…………………………27
一、人類成熟的miRNA標靶啟動子序列與能量計算…………27
二、人類成熟的miRNA標靶轉錄因子結合位置………………29
三、啟動子序列中可能具有的轉錄因子結合位置………………29
第三節 預測新穎的人類miRNA基因……………………………30
第四章 結論與討論…………………………………………………32
參考文獻與網站………………………………………………………96
附錄……………………………………………………………………103
vi
[1] 聶瑞軍RNA干擾(RNAi)及其應用. 生命科學趨勢2(1), 1-7 (2004).
[2] 華友佳及肖華勝 microRNA研究進展. 生命科學 17(3), 1-4 (2005).
[3] 秦峰松及楊崇林 小線蟲,大發現:Caenorhabditis elegans 在生命科學研究中的重要貢獻. 生命科學 18(5), 419-424 (2006).
[4] Gupta, P. K. RNA interference – gene silencing by double-stranded RNA : The 2006 Nobel Prize for Physiology or Medicine. Current Science 91(11), 1443-1446 (2006).
[5] Eddy, Sean R Noncoding RNA genes and the modern RNA world. Nature 2(12), 919-928 (2001).
[6] Tomaru, Yasuhiro and Hayashizaki, Yoshihide Cancer research with non-coding RNA. Cancer Science 97(12), 1285-1290 (2006).
[7] Finnegan, E. Jean and Matzke, Marjori A. The small RNA world. Journal of Cell Science 116(23), 4689-4693 (2003).
[8] Elbashir, Sayda M., Lendeckel, Winfried and Tuschl, Thomas RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes & Development 15(2), 188-200 (2001).
[9] Pasquinelli, AE, Reinhart, BJ and Slack, F et al. Conservation of the sequence and temporal expression of let-7 heterochronic RNA. Nature 408(6808), 86-89 (2000).
[10] Reinhart, BJ and Bartel, DP Small RNAs correspond to centromere heterochromatic repeats. Science 297(5588), 1831 (2002).
[11] Ambros, V, Lee, RC and Lavanway, A et al. MicroRNAs and other tiny endogenous RNAs in C. elegans. Current Biology 13(10), 807-818 (2003).96
[12] Lin, He and Gregory, J. Hannon MicroRNAs: small RNAs with a big role in gene regulation. Nature Reviews. Genetics 5(7), 522-531(2004).
[13] Kim, V. Narry and Nam, Jin-Wu Genomics of microRNA. Trends in Genetics 22(3), 165-173 (2006).
[14] Tang, Guiliang siRNA and miRNA: an insight into RISCs. Trends in Biochemical Sciences 30(2), 106-114 (2005).
[15] Bompfünewerer, Athanasius F., Flamm, Christoph and Fried, Claudia et al. Evolutionary patterns of non-coding RNAs. Theory in Biosciences 123(4), 301-369 (2005).
[16] Novina, Carl D. and Sharp, Phillip A. The RNAi revolution. Nature 430(6996), 161-164 (2004).
[17] Kuwabara, T, Hsieh, J and Nakashima, K et al. A small modulatory dsRNA specifies the fate of adult neural stem cells. Cell 116(6), 779-93 (2004).
[18] Kim, V. Narry Small RNAs: classification, biogenesis, and function. Molecules and Cells 19(1), 1-15 (2005).
[19] Napoli, C, Lemieux, C and Jorgensen, R Introduction of a chimeric chalcone cynthase gen results in reversible co-suppression of homologo trans. The Plant Cell 2(4), 279-289 (1990).
[20] Guo, S and Kemphues, KJ par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 81(4), 611-620 (1995).
[21] Fire, A, Xu, S and Montgomery, MK et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669), 744-745 (1998).
[22] Zamore, Phillip D., Tuschl, Thomas and Sharp, Phillip A. et al. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101(1), 25–33 (2000).
[23] Abdelrahim, Maen, Safe, Stephen and Baker, Cheryl et al. RNAi and cancer: implications and applications. Journal of RNAi and Gene Silencing 2(1), 136-145 (2006).
[24] Leung, Ray K.M. and Whittaker, Paul A. RNA interference: from gene silencing to gene-specific therapeutics. Pharmacology & Therapeutics 107(2), 222-239 (2005).
[25] Kim, V. Narry RNA interference in functional genomics and medicine. Journal of Korean Medical Science 18(3), 309-318 (2003).97
[26] Rao, Meenakshi and Sockanathan, Shanthini Molecular mechanisms of RNAi: implications for development and disease. Birth Defects Research. Part C, Embryo today : reviews 75(1), 28-42 (2005).
[27] Milhavet, Olliver, Gary, Devin S. and Mattson, Mark P. RNA interference in biology and medicine. Pharmacological Reviews 55(4), 629-648 (2003).
[28] Kennerdell, JR and Carthew, RW Heritable gene silencing in Drosophila using doublestranded RNA. Nature Biotechnology 18(8), 896-898 (2000).
[29] Hammond, SM, Caudy, AA and Hannon, GJ Post-transcriptional gene silencing by double-stranded RNA. Nature Reviews. Genetics 2(2), 110-119 (2001).
[30] Sharp, Phillip A. RNA interference—2001. Genes & Development 15(5), 485-490 (2001).
[31] Kooter, JM, Matzke, MA and Meyer, P Listening to the silent genes: transgene silencing, gene regulation and pathogen control. Trends in Plant Science 4(9), 340-347 (1999).
[32] Kuwabara, PE and Coulson, A RNAi--prospects for a general technique for determining gene function. Parasitology Today (Personal ed.) 16(8), 347-349 (2000).
[33] Lee, RC, Feinbaum, RL and Ambros, V The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5), 843-854 (1993).
[34] Reinhart, Brenda J., Slack, Frank J. and Basson, Michael The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403(6772), 901-905 (2000).
[35] Wienholds, Erno and Plasterk, Ronald H.A. MicroRNA function in animal development. FEBS Letters 579(26), 5911-5922 (2005).
[36] Miska, Eric A How microRNAs control cell division, differentiation and death. Current Opinion in Genetics & Development 15(5), 563-568 (2005).
[37] Kim, V. Narry MicroRNA biogenesis: coordinated cropping and dicing. Nature Reviews. Molecular Cell Biology 6(5), 376-385 (2005).
[38] International Human Genome Sequencing Consortium Initial sequencing and analysis of the human genome. Nature 409(6822), 98 860-921 (2001).
[39] International Human Genome Sequencing Consortium Finishing the euchromatic sequence of the human genome. Nature 431(7011), 931-945 (2004).
[40] M, Gardiner-Garden and M, Frommer CpG islands in vertebrate genomes. Journal of Molecular Biology 196(2), 261-282 (1987).
[41] Cooper, DN and Krawczak, M Cytosine methylation and the fate of CpG dinucleotides in vertebrate genomes. Human Genetics 83(2), 181-188 (1989).
[42] Feinberg, Andrew P. Methylation meets genomics. Nature Genetics 27(1), 9-10 (2001).
[43] Jones, PA and Takai, D The role of DNA methylation in mammalian epigenetics. Science 293(5532), 1068-1070 (2001).
[44] Esteller, M, Corn, PG and Baylin, SB et al. A gene hypermethylation profile of human cancer. Cancer Research 61(8), 3225-3229 (2001).
[45] Free, A, Wakefield, RI and Smith, BO et al. DNA recognition by the methyl-CpG binding domain of MeCP2. The Journal of Biological Chemistry 276(5), 3353-3360 (2001).
[46] Jones, Peter A. and Laird, Peter W. Cancer epigenetics comes of age. Nature Genetics 21(2),163-167 (1999).
[47] Das, Partha M. and Singal, Rakesh DNA methylation and cancer. Journal of Clinical Oncology 22(22), 4632-4642 (2004).
[48] Tycko, Benjamin Epigenetic gene silencing in cancer. The Journal of Clinical Investigation 105(4), 401-407 (2000).
[49] Myohanen, SK, Baylin, SB and Herman, JG Hypermethylation can selectively silence individual p16ink4A alleles in neoplasia. Cancer Research 58(4), 591-593 (1998).
[50] Yang, Bin, Guo, Mingzhou and Herman, James G. et al. Aberrant promoter methylation profiles of tumor suppressor genes in hepatocellular carcinoma. American Journal of Pathology 163(3), 1101-1107 (2003).
[51] Bao, Ning, Lye, Khar-Wai and Barton, M. Kathryn MicroRNA binding sites in Arabidopsis class III HD-ZIP mRNAs are required for methylation of the template chromosome. Developmental Cell 7(5), 653-662 (2004).
[52] Matzke, Marjori A. and Birchler, James A. RNAi-mediated 99
pathways in the nucleus. Nature Reviews. Genetics 6(1), 24-35 (2005).
[53] Wynter, Coral V.A. The dialectics of cancer: a theory of the initiation and development of cancer through errors in RNAi. Medical Hypotheses 66(3), 612-635 (2006).
[54] Ronemus, Michael and Martienssen, Rob RNA interference: methylation mystery. Nature 433(7025), 472-473 (2005).
[55] Melquist, Stacey and Bender, Judith Transcription from an upstream promoter controls methylation signaling from an inverted repeat of endogenous genes in Arabidopsis. Genes & Development 17(16), 2036-2047 (2003).
[56] Pontes, Olga, Li, Carey Fei and Nunes, Pedro Costa et al. The Arabidopsis chromatin-modifying nuclear siRNA pathway involves a nucleolar RNA processing center. Cell 126(1), 79-92 (2006).
[57] Zhang, Xiaoyu, Yazaki, Junshi and Sundaresan, Ambika et al. Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126(6), 1189-1201 (2006).
[58] Rodriguez,Antony, Griffiths-Jones, Sam and Ashurst, Jennifer L. et al. Identification of mammalian microRNA host genes and transcription units. Genome Research 14(10A), 1902-1910 (2004).
[59] Griffiths-Jones, Sam, Grocock, Russell J. and Dongen, Stijn van et al. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Research 34(Database issue), D140-D144 (2006).
[60] Yamashita, Riu, Suzuki, Yutaka and Wakaguri, Hiroyuki et al. DBTSS: database of human transcription start sites, progress report 2006. Nucleic Acids Research 34(Database issue), D86-D89 (2006).
[61] Hinrichs, A. S., Karolchik, D. and Baertsch, R. et al. The UCSC genome browser database: update 2006. Nucleic Acids Research 34(Database issue), D590-D598 (2006).
[62] Holstebroe, S. and Tommerup, N. A subset of miRNA genes are associated with CpG-islands. European Human Genetics Conference 2005 (2005).
[63] Altschul, Stephen F., Gish, Warren and Miller, Webb et al. Basic local alignment search tool. Journal of Molecular Biology 215(3), 403-410 (1990).
[64] Altschul, Stephen F., Madden, Thomas L. and Schäffer, 100
Alejandro A. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25(17), 3389-3402 (1997).
[65] Korf, Ian, Yandell, Mark and Bedell Joseph BLAST. O’REILLY (2003).
[66] Matys, V., Fricke, E. and Geffers, R. et al. TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Research 31(1), 374-378 (2003).
[67] Nam, Jin-Wu, Shin, Ki-Roo and Han, Jinju et al. Human microRNA prediction through a probabilistic co-learning model of sequence and structure. Nucleic Acids Research 33(11), 3570-3581 (2005).
[68] Yang, Liang Huai, Hsu, Wynne and Lee, Mong Li et al. Identification of microRNA precursors via SVM. Proceedings of 4th Asia-Pacific Bioinformatics Conference 267-276 (2006).
[69] Weber, Michel J. New human and mouse microRNA genes found by homology search. The FEBS Journal 272(1), 59-73 (2005).
[70] Altuvia, Yael, Landgraf, Pablo and Lithwick, Gila et al. Clustering and conservation patterns of human microRNAs. Nucleic Acids Research 33(8), 2697-2706 (2005).
[71] Brown, James R. and Sanseau, Philippe A computational view of microRNAs and their targets. Drug Discovery Today 10(8), 595-601 (2005).
[72] Hsu, Paul W.C., Huang, Hsien-Da and Hsu, Sheng-Da et al. miRNAMap: genomic maps of microRNA genes and their target genes in mammalian genomes. Nucleic Acids Research 34(Database issue), D135-D139 (2006).
[73] Wang, Xiaowo, Zhang, Jing and Li, Fei et al. MicroRNA identification based on sequence and structure alignment. Bioinformatics (Oxford, England) 21(18), 3610-3614 (2005).
[74] Alain, Sewer, Nicodème, Paul and Pablo, Landgraf et al. Identification of clustered microRNAs using an ab initio prediction method. BMC Bioinformatics 6(267), 1-15 (2005).
[75] Bentwich, Isaac, Avniel, Amir and Karov, Yael et al. Identification of hundreds of conserved and nonconserved human microRNAs. Nature Genetics 37(7), 766-770 (2005).
[76] Bentwich, Isaac Prediction and validation of microRNAs and their 101 targets. FEBS Letters 579(26), 5904-5910 (2005).
[77] Hovsepian, Jeannette A. and Frenster, John H. RNA-induced melting of DNA during selective gene transcription, Molecular Biology of the Cell 13, suppl. 239a (2002).
[78] Barone, F, Cellai, L and Matzeu, M et al. DNA, RNA and hybrid RNA-DNA oligomers of identical sequence: structural and dynamic differences. Biophysical Chemistry 86(1), 37-47 (2000).
[79] Barbieri, CM, Li, TK and Guo, S et al. Aminoglycoside complexation with a DNA.RNA hybrid duplex: the thermodynamics of recognition and inhibition of RNA processing enzymes. Journal of the American Chemical Society 125(21), 6469-6477 (2003).
[80] Sethupathy, Praveen, Corda, Benoit and Hatzigeorgiou, Artemis G. TarBase: A comprehensive database of experimentally supported animal microRNA targets. RNA 12(2), 192-197 (2006).
[81] Wikipedia: http://en.wikipedia.org/wiki/Main_Page
[82] National RNAi Core Facility: http://rnai.genmed.sinica.edu.tw/ch/
[83] International Human Genome Sequencing Consortium: http://www. genome.gov/
[84] NCBI: http://www.ncbi.nlm.nih.gov/
[85] miRBase: http://microrna.sanger.ac.uk/
[86] DBTSS: http://dbtss.hgc.jp/
[87] UCSC: http://genome.ucsc.edu/index.html?org=Human&db=hg17& hgsid=67297612
[88] 國科會國家高速電腦中心: http://www.nchc.org.tw/
[89] TRANSFAC: http://www.gene-regulation.com/pub/databases.html
[90] EBI: http://www.ebi.ac.uk/
[91] TarBase: http://www.diana.pcbi.upenn.edu/tarbase.html
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊