跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/07/30 05:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:龔正明
研究生(外文):Cheng-Ming Kung
論文名稱:系統動態學應用於晶圓廠生產控制與產能規劃之研究-以後段製程為例
論文名稱(外文):A Study of System Dynamics Applied in Production Control and Capacity Planning of Wafer Fabrication---The Case Study of Back-End-Of-The-Line
指導教授:張炳騰張炳騰引用關係曾宗瑤曾宗瑤引用關係
指導教授(外文):Ping-Teng ChangTsueng-Yao Tseng
學位類別:碩士
校院名稱:東海大學
系所名稱:工業工程與經營資訊學系
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:136
中文關鍵詞:晶圓製造廠系統動態學產能規劃投料控制法則
外文關鍵詞:Wafer FabricationSystem DynamicsCapacity PlanningRelease Control
相關次數:
  • 被引用被引用:2
  • 點閱點閱:277
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
近年來大眾對於IC產品之需求量大幅增加,半導體產業競爭日益劇烈,在面臨廣大的需求下,由於同業競爭之壓力,銷售部門不斷接收訂單以提昇公司之獲利,而許多公司在尚未執行產能規劃或是產能模擬之前,便直接利用生產作業排程來解決生管問題,結果導致在製品過多、產能利用率低、交期訂單無法滿足等問題。細探其原因,赫然發現問題點就在於產能不足之故。
為了快速且精準的掌握產能的脈動,因此本研究採用系統動態學為模型建構的基礎,以觀察系統之行為特徵,並使用因果回饋圖來釐清系統中元素的交互作用,進而推測隱藏於問題背後之因果回饋環路,充分了解元素間彼此影響性後,將其轉換為數學模型,藉由系統動態學特有的高階複雜、回饋、非線性、環環相扣、滯延等特性,真實呈現出系統之行為,提供有效模擬和分析複雜動態系統的工具。
本研究欲運用系統動態學進行晶圓製造廠之模擬模型建構,並且結合系統動態學之回饋特性與投料控制法則之控制功能,針對產銷失衡之情況,以有效管控瓶頸資源的訴求下,對於目前投料數量進行調整,使得瓶頸資源及廠內在製品數量能夠維持在理想之水準,進而平衡晶圓製造時績效之間的衝突現象,並且針對不同之投料比例時,以控制投料數量的方式來改善瓶頸漂移的情況,並且良好的瓶頸管控,將會使得產能利用率、在製品水準、生產週期時間等生產績效獲得提升,使得晶圓製造過程更加平穩,在有限的產能資源下,為企業創造出最大的營運效益。
For the past few years the public demand for IC products significantly increase the semiconductor industry increasingly fierce competition, in the face of the huge of the demand, due to competition with the pressure, sales departments have constantly received orders to enhance the company's profitability, many companies have not yet been implemented in capacity planning or capacity simulation, then the direct use of production scheduling to solve the problem of production management, the products result in excessive WIP, capacity utilization low and time of delivery can't satisfied etc. Explore the reasons detailed, impressively found problem lies in capacity shortage.
In order to fast and accurate grasp of the capacity pulsation, this research uses the system dynamic method to construct the model, to observe the behavior characteristics of systems , and the use of causal feedback to clarify the interaction of elements in the system. Then extrapolated the causal feedback loop hidden behind the problem, after fully understood between the element each other influence, will be converted to a mathematical model, system dynamics has a unique characteristic of complex, feedback, nonlinear, linked together and delay, really presents behavior of the system, provides the effectivesimulation and the analysis complex dynamic system tool.
Therefore this research wants using the system dynamics method for wafer fabrication simulation model construction, and integrating system dynamics feedback characteristics and release control rules controlling function, In view of production and marketing unbalanced situation, controls the bottleneck resources by the effective under the demand, and adjustment the present release quantity, causes the bottleneck resources and fabrication WIP quantity can be maintained at a desired level, balance wafer fabrication then when the conflict between performance, and in view of different release proportion, by controls the release quantity ways to improve the situation of bottleneck drifting, and good control of the bottleneck will be able to cause capacity utilization, WIP level, production cycle time and other production performance obtain the promotion, to make wafer manufacture process more stable, fabrication process more stable, the limited production resources, to create the greatest operational efficiency for the enterprise.
摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3 研究流程與架構 3
1.4 研究範圍 4
第二章 文獻探討 7
2.1 半導體產業概述 7
2.1.1 半導體產業現況簡介 7
2.1.2 半導體產業生產特性簡介 7
2.1.3 半導體產業常用之評估績效簡介 9
2.2 晶圓製造廠產能規劃相關文獻 11
2.3 晶圓製造廠投料法則相關文獻 13
2.4 系統動態學之相關文獻 14
2.4.1 系統動態學(System Dynamics)簡介 14
2.4.2 系統動態學模型 15
2.4.3 系統動態學之特性 16
2.4.4 系統動態學相關研究 17
2.4.5 I-think軟體相關資料 17
第三章 研究方法 19
3.1 第一階段:產能模擬模型建置 20
3.1.1 概念化階段 20
3.1.2 公式化階段 21
3.1.3 建立初步模式 29
3.2 產能規劃控制系統 38
3.2.1 系統動態學與投料控制結合 39
3.2.2 投料管控導向之產能規劃 41
3.3 研究假設 42
第四章 系統實作與結果分析 43
4.1 生產系統現況介紹 43
4.2 系統實作-產能需求超出廠內產能負荷之情境 46
4.2.1 首站控制法(One-Stage Control;OS) 46
4.2.2 瓶頸定量在製品法(Constant WIP For Bottleneck;CONWIP) 55
4.2.3 產品別定量在製品法(Constant WIP For Production;CONWIP) 61
4.2.4 首站瓶頸在製品控制法(Wip-to-Bottleneck Control;WB) 67
4.2.5 避免飢餓法(Starvation Avoidance;SA) 72
4.2.6 控制方法之綜合比較與分析 77
4.3 系統實作-產能需求低於廠內可用產能之情境 86
4.3.1 控制方法之綜合比較與分析 87
4.4 系統實作-產品組合改變引發瓶頸漂移之情境 95
4.4.1 0.18微米製程類產品比例≦32%,需求正常時 97
4.4.2 0.18微米製程類產品比例≦32%時,需求增加時 105
4.4.3 0.18微米製程類產品比例≧76%時,需求正常時 114
4.4.4 0.18微米製程類產品比例≧76%時,需求增加時 121
第五章 結論與建議 131
5.1 研究總結 131
5.2 後續研究建議 132
參考文獻 133
中文部份:
[1]大野耐一, 「豐田生產方式與現場管理」,日本能率協會,中華企業管理發展中心,1981
[2]王立志,系統化運籌與供應鏈管理,滄海書局,2006
[3]黃宏文, 鍾淑馨, “晶圓製造廠生產作業控制策略之設計”, 工業工程學刊, 16(1), 93-113, 1999
[4]陶在樸,系統動態學,五南圖書出版公司,1999。
[5]劉玉山,系統動態學方法,文笙書局,台北市,1977。
[6]謝長宏,系統動態學-理論、方法與運用,中興管理顧問公司,台北市,民國69年。

英文部分:
[7]Alfeld, L.W. and Graham, A.K., 1976, Introduction to Urban Dynamics (Pegasus Communication).
[8]Atherton, L.F. and Atherton, R.W., 1995, Wafer Fabrication: Factory Performance and Analysis, Kluwer Academic Publishers.
[9]Akkermans, H.A., Bogerd, P., and Vos, B., 1999, Virtuous and vicious cycles on the road towards international supply chain management. International Journal of Operations & Production Management, 19, 565–581.
[10]Arisha, A., Young, P., and El Baradie, M., 2004, A simulation model to characterize the photolithography process of a semiconductor wafer fabrication, Journal of Materials Processing Technology, 155-156(30), 2071-2079.
[11]Aybar, M., Potti, K., and LeBaron, T., 2002, Using Simulation to Understand Capacity Constraints and Improve Efficiency on Process Tools. Proceeding of the 2002 Winter Simulation Conference, 1431-1435.
[12]Bertthauer K. M., 1995, “Capacity planning in Networks of Queues with Manufacturing Application.,” Mathl. Comput. Modeling, 21(12) 35-46.
[13]Burman, D.Y., Gurrola-Gal, F.J., Nozari, A., Sathaye, S., and Sitarik, J.P., 1986, Performance analysis techniques for IC manufacturing lines,” AT&T Technical Journal, 65(4), 46-57.
[14]Chou Y-C, and Hong L-H, 2000 “A Methodology for Product Mix Planning in Semiconductor Foundry Manufacturing.,” IEEE Transactions on Semiconductor Manufacturing, 13(3), 278 -285.
[15]Chou, W. and Everton, J., 1996, Capacity Planning For Development Wafer Fab Expansion, IEEE/SEMI 1996 Advanced Semiconductor Manufacturing Conference and Workshop, 17-22.
[16]Chen, J.-C., Chen, C.-W., Lin, C.-J., and Rau, H., 2005, Capacity Planning with Capability for Multiple Semiconductor Manufacturing Fabs, Computers and Industrial Engineering, 48(4), 709-732.
[17]Coylea, R.G., 1997, System dynamics at Bradford University: A silver jubilee review. System Dynamics Review, 13, 311–324.
[18]Daniel P.C., Gerald E.F., and Yao D.D., 1996 “A Queueing Network Model for Semiconductor Manufacturing.,” IEEE Trans., 9(3), 417-427.
[19]Delp, D., Si, J., Hwang, Y., and Pei, B., 2003, A Dynamic System Regulation Measure for Increasing Effective Capacity: the X-Factor Theory, Proceedings of the 14th Annual IEEE/SEMI Advanced Semiconductor Manufacturing Conference and Workshop, Munich, Germany.
[20]Forrester, J.W., 1961, Industrial Dynamic (Productivity).
[21]Forrester, J.W., 1968, Principle of Systems, 2nd Ed. (Pegasus Communication).
[22]Forrester, J.W., 1969, Urban Dynamics (Pegasus Communication).
[23]Forrester, J.W., 1971, World Dynamics (Pegasus Communication).
[24]Forrester, J.W., 1975, Collected Papers of Jay W. Forrester (Pegasus Communication).
[25]Forrester, N.B., 1973, The Life Cycle of Economic Development (Pegasus Communication).
[26]Forrester, J.W., Low, G.W., and Mass, N.J., 1978, Employment, Labor Productivity, and Wage Change (Working Paper D-2845-1, Sloan School of Management, M.I.T).
[27]Grandstaff, P.J. and Markland, R.E., 1975, Modeling Demographic-Employment Interactions in an Urbanized Economy. Simulation, 24(4), 113-125
[28]Glassey, C.R. and Resende, M.G.C., 1988, Cloased-loop Jop Shop Release Control for VLSI Circuit Manufacturing, IEEE Transactions on Semiconductor Manufacturing, 1(1), 26-46.
[29]Hansen, J.E., and Bie, P., 1987, Distribution of body fluids, plasma protein, and sodium in dogs: a system dynamics model. System Dynamics Review, 3, 116–135.
[30]Horiguchi, K., Raghavan, N., Uzsoy, R., and Venkateswaran, S., 2001, Finite-capacity production planning algorithms for a semiconductor wafer fabrication facility, International Journal of Production Research, 39(5), 825-842.
[31]Homer, J.B. and Clair, C.L.St., 1991, A model useful in analyzing public policies, such as a needle cleaning campaign. Inference, 21, 26–29.
[32]Hood, S., Bermon, S., and Barahona, F., 2003, Capacity planning under demand uncertainty for semiconductor manufacturing, IEEE Transactions on Semiconductor Manufacturing, 16, 273-280.
[33]Hopp, W.J., Spearman, M.L., Chayet, S., Donohue, K.L., and Gel, Esma S., 2002, Using an optimized queuing network model to support wafer fab design, IIE Transactions, 34(2), 119-130.
[34]Hung, M.-H., Wang, E., and Wang, I., 2002, Using simulation and daily-demand method to analyze the capacity utilization for product-mix in semiconductor fabrication. Semiconductor Manufacturing Technology Workshop, 302-306.
[35]John, M.K., 1995, Capacity Utilization Bottleneck Efficiency System - CUBES, IEEE Transaction on Components, Packaging, and Manufacturing Technology – Part A., 18(3), 484-491.
[36]Kim, D.-H., and Kim, D.-H., 1997, A system dynamics model for a mixed-strategy game between police and driver. System Dynamics Review, 13, 3352.
[37]Lai, C.-L., Lee, W.-B., and Ip, W.-H., 2003, A study of system dynamics in just-in-time logistics. Journal of Materials Processing Technology, 138, 265269.
[38]Li, A. and Co., H.C., 1991, A dynamic programming model for the kanban assignment problem in a multistage multiperiod production system, International Journal of Production Research, 29(1), 1-16.
[39]Levitt M.E., and Abraham, J.A., 1990 “Just-in-Time Methods for Semiconductor Manufacturing,” Proceedings Advanced Semiconductor Manufacturing Conference, Danvers, Massachusetts, 3–9.
[40]Lou, S.X.C. and Kager, P.W., 1989, A Robust Production Control Policy for VLSI Wafer Fabrication, IEEE Transactions on Semiconductor Manufacturing, 2(4), 159-164.
[41]Lyneis, J.M., 1980, Corporate Planning and Policy Design, A system Dynamics Approach. (Pegasus Communication).
[42]Lyneis, J.M., 2000, System dynamics for market forecasting and structural analysis. System Dynamics Review, 16, 325.
[43]Maier, F.H., 1998, New product diffusion models in innovation managementA system dynamics perspective. System Dynamics Review, 14, 285308.
[44]Mascolo, D.M., Frein, Y., and Dallery, Y., 1992, Queueing Network Modeling And Analysis Of Kanban Systems, Computer Integrated Manufacturing, Proceedings of the Third International Conference, 202-211.
[45]Miller, D.J., 1990, Simulation of a semiconductor manufacturing line, Communications of the ACM, 33(10), 99-108.
[46]Ninios, P., Vlahos, K., and Bunn, D.W., 1995, Industry simulation: system modelling with an object oriented/DEVS technology, European Journal of Operational Research, 81(3), 521-534
[47]Occhino, T.J., 2000, Capacity Planning Model: The Important Inputs, Formulas, And Benefits. IEEE International Symposium on Semiconductor Manufacturing Conference, Proceedings, 455-458.
[48]Richmonda, B., 1997, The strategic forum: aligning objectives, strategy and process. System Dynamics Review, 13, 131–148.
[49]Scholl, G.A., 1995, Benchmarking the system dynamics community: research results. System Dynamics Review, 11, 139–155.
[50]Scholl, W. and Domaschke, J., 2000, Implementation of Modeling and Simulation in Semiconductor Wafer Fabrication with Time Constraints Between Wet Etch and Furnace Operations, IEEE Transactions on Semiconductor Manufacturing, 13(3), 257-259
[51]Senge, P., and Isaacs, W., 1990, Overcoming limits to learning in computer-based learning environments, European Journal of Operational Research, 59(1), 183-196.
[52]Spearman, M.L., and Woodruff, D.L., 1990, CONWIP:a pull alternative to kanban, Int. J. Prod. Res., 28(5), 879-894.
[53]Stave, K.A., 2002, Using system dynamics to improve public participation in environmental decisions. System Dynamics Review, 18, 139167.
[54]Sterman, J.D., 1989, Modeling managerial behavior: misperception of feedback in a dynamic decision making experiment. Management Science, 35, 321339.
[55]Uribe, A.M., Cochran, J.K., and Shunk, D.L., 2003, Two-Stage Simulation Optimization for Agile Manufacturing Capacity planning, International Journal of Production Research, 41(6), 1181-1197.
[56]Uzsoy, R., Lee C-Y, and Martin-Vega LA, 1992, “A Review of Production Planning and SchedulingModels in the Semiconductor Industry. Part Ⅰ: System Characteristics, Performance Evaluation and Production planning.,” IIE Trans., 24(4), 47-60.
[57]Wein, L.M., 1988, Scheduling semiconductor wafer fabrication, IEEE Transaction on Semiconductor Manufacturing, 1(3), 115-130.
[58]Wiendahl, H-P., and Breithaupt, J-W., 2000, Automatic production control applying control theory, International Journal of Production Economics, 63(1), 33-46.
[59]William, J.S., 1999 ”Production/ operations management,” 6th ed., Irwin, Boston.
[60]Yan H., Lou S., and Sethi S., 2000, Robustness of various production control policies in semiconductor manufacturing, Production and Operations Management, 9(2), 171-183.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top