參考文獻
1.林志達,”經濟型血糖感測器之製作及市售電及片之評估”,
中原大學醫學工程學系,2002年。
2.許曉清,”常用臨床檢驗手冊”,藝軒圖書,2001年。
3.Turner, A. P. F., Karube, I. and Wilson, G. S., Biosensor: Funda- mentals and applications, Oxford University Press, New York, (1989) p.428.
4Lvova, L., Martinelli, E., Mazzone, E., Pede, A., Paolesse, R., Natale, C. D and D’Amico, A., Electronic tongue based on an array of metallic potentiometric sensors, L. Lvova et al. / Talanta, 70 (2006) 833–839.
5Patchett, R. A., Kelly, A. F. and Kroll,R.G., Investigation of a simple amperometric electrode system to rapidly quantify and detect bacteria in foods, The Journal of applied bacteriology, 66 (1989)49-55.
6Lorimer, J. P., Jagit, K. and Mason, T. J., An inexpensive and robust conductance electrode, Talanta, 32 (1985) 212-214.
7.Tuma, P., Opekar, F., Jelinek, I. and Stulik, K., A capillary electro- phoresis conductometric detector based on measurement of the conductivity of a plastic hydrophilic strip, Electroanalysis, 11(1999) 1022-1026.
8.Joseph, W., Amperometric biosensors for clinical and therapeutic drug monitoring : a review, J. Pharm. Biomed. Anal., 19 (1999) 47-53.
9.Clark, L. C., Jr. and Lyons, C., Electrode system for continuous monitoring in cardiovascular surgery, Ann. NY Acad. Sci., 102 (1962) 29-45
10.Nien, P. C., Tung, T. S. and Ho, K. C., Amperometric glucose
sensors based on entrapment of glucose oxidase in a poly(3,4-ethyl-enedioxythiophene) film, Electroanalysis, 18 (2006) 1408-1415.
11.Oyama, T. J., Rajagopalan, R. and Heller, A., Glucose electrodes based on cross-linked bis(2,2'-bipyridine) chloroosmium(+/2+) complexed poly(1-vinylimidazole) films, Anal. Chim. Acta, 65
(1993) 3512-3517.
12.Kase, Y. and Muguruma, H., Amperometric glucose biosensor based on mediated electron transfer between immobilized glucose oxidase and plasma polymerized thin film of dimethylaminomethyl ferrocene on sputtered glod electrode ,Anal. Sci., 20 (2004) 1143-1146.
13.Chuang, C. L., Wang, Y. J. and Lan, H. L., Amperometric glucose sensors based on ferrocene-containing B-polyethylenimine and immobilized glucose oxidase, Anal. Chim. Acta, 353 (1997) 37-44.
14.Li, C. X., Zeng, Y. L. and Tang, C. R., Glucose biosensor based on carbon/PVC-COOH/ferrocene composite with covalently immobili- zed enzyme, Chinese Chemical Letters, 16 (2005) 1357-1360.
15.Zeng, G. M., Tang, L., Shen, G. L., Huang, G. H. and Niu, C. G., Determination of trace chromium(VI) by an inhibition based enzyme biosensor incorporating an electropolymerized aniline membrane and ferrocene as electron transfer mediator, Intern. J. Environ. Anal. Chem., 84 (2004) 761-774.
16.Cass, A. E. G., Davis, G., Francis, G. D., Hill, H. A. O., Aston, W. J., Higgins, I. J., Plotkin, E. V., Scott, L. D. L. and Turner, A. P. F., Ferrocene-mediated enzyme electrode for amperometric determination of glucose, Anal. Chem., 56 (1984) 667-671.
17.Ghica, E. M. and Brett, C. M. A., A glucose biosensor using methyl viologen redox mediator on carbon film electrodes, Anal. Chim. Acta, 532 (2005) 145–151.
18.Zhong, X., Yuan, R., Chai, Y., Dai, J., Liu, Y. and Tang, D., An amperometric biosensor for glucose based on self-assembling nano-particles and electrosynthesis of poly-o-diaminobenzene on the prussian blue-modified gold electrode, Anal. Lett., 38 (2005) 1085-
1097.
19.Deng, X. H., Kan, X. W., Yu, Y., Zhang, W. Z., Liu, H. Y. and Fang, B., Electrochemical and catalytic properties of ferrocene/
L-cysteine modified electrode”,Acta Phys. –Chim. Sin., 21 (2005) 1399-1402.
20.Chen, C. H., Li, H. and Liu, C. H., Research progresses on ferrocene and its derivatives modified electrodes, Chinese Journal of Electron Devices, 27 (2004) 522-526.
21.Hodak, J., Etchenique, R., Calvo, E. J., Singhal, K. and Bartlett, P. N., Layer-by-layer self-assembly of glucose oxidase with a poly(allylamine)ferrocene redox mediator, Langmuir, 13 (1997) 2708-2716.
22.Palmisano, F., Zambonin, P. G., Centonze, D. and Quinto, M., A disposable, reagentless, third-generation glucose biosensor based on overoxidized poly(pyrrole)/tetrathiafulvalene-tetracyanoquinodi-methane composite, Anal. Chem., 74 (2002) 5913-5918.
23.Kulys,J., The carbon paste electrode encrusted with a microreactor as glucose biosensor, Biosensors & Bioelectronics, 14 (1999) 473- 479.
24.Han, Y. J., Watson, J. T., Stucky, G. D. and Butler, A., Catalytic activity of mesoporous silicate-immobilized chloroperoxidase, Journal of Molecular Catalysis B: Enzymatic ,17 (2002),1–8.
25.Hudson, S., Magner, E., Cooney, J. and Hodnett, B. K. Methodology for the immobilization of enzymes onto mesoporous materials, J. Phys. Chem. B, 109 (2005) 19496-19506.
26.Sotiropoulou, S., Vamvakaki, V. and Chaniotakis, N. A., Stabilization of enzymes in nanoporous materials for biosensor applications,Biosensors & Bioelectronics, 20 (2005) 1674–1679.
27.Zhao, B., Shi, B. and Ma, R., Immobilization of papain on the mesoporous molecular sieve MCM-48, Engineering in Life Science, 5 (2005) 436-441.
28.Lee, B. D., Lee, J. W., Kim, J. B., Kim, J. Y., Na, H. B., Kim, B. K., Shin, C. H., Kwak, J. H., Dohnalkova, A., Grate, J. E., Hyeon, T. and Kim, H. D., Simple fabrication of a highly sensitive and fast glucose biosensor using enzymes immobilized in mesocellular carbon foam, Adv. Mater., 17 (2005) 2828–2833.
29.Wu, B. Y., Hou, S. H., Yin, F., Zhao, Z. X., Wang, Y. Y., Wng, X. S. and Chen, Q., Amperometric glucose biosensor based on multi-layer films via layer-by-layer self-assembly of multi-wall carbon nanotubes,gold nanoparticles and glucose Oxidase on the Pt electrode, Biosensors & Bioelectronics, 22 (2007) 2854-2860.
30.Dai, Z. H., Fang, M., Bao, J. C., Wang, H. S. and Lu, T. H., An amperometric glucose biosensor constructed by immobilizing glucose oxidase on titanium-containing mesoporous composite material of no. 41 modified screen-printed electrodes, Anal. Chim. Acta, 591 (2007) 195-199.
31.Sharma, A. L., Singhal, R., Kumar, A., Krishan, R., Pande, K. and Malhotra, B. D., Immobilization of glucose oxidase onto electrochemically prepared poly(aniline-co-fluoroaniline) films, J. Appl. Polym. Sci., 91 (2004) 3999–4006.
32.Borole, D. D., Kapadi, U. R., Mahulikar, P. P. and Hundiwale, D. G., Glucose oxidase electrodes of a terpolymer poly(aniline-co-o-anisidine-co-o-toluidine) as biosensors, Eur. Polym. J., 41 (2005) 2183–2188.
33.Ma, M. M., Qu, L. T. and Shi, G. Q., Glucose oxidase electrodes based on microstructured polypyrrole films, Journal of Applied Polymer Science, 98 (2005) 2550-2554.
34.李忠哲,聚苯胺之製備與性質探討及其鋰二次電池之應用,東海大學化學工程所碩士論文,1998年。35.魏喬建,聚苯胺/不鏽鋼電極之製備動力與其在鋰電池中之充放電行為,東海大學化學工程所碩士論文,2001年。36.Kitani, A., Kaya, M. and Sasaki, K., Performance study of aqueous polyaniline batteries, J. Electrochem. Soc., 133 (1986) 1069-1073.
37.林建中,高分子材料性質與應用,高立圖書有限公司,87年,p.450。
38.The 2000 Nobel Prize in Chemistry, The Royal Swedish Scademy of Sciences,October 10,2000.
http:/www.nobel.se/chemistry/laureates/2000/public.html.
39.吳詩澤,電聚合聚苯胺複合膜與其在鋰二次電池之應用,東海大學化學工程所碩士論文,1999年。40.MacDiarmid, A. G., Asturias, G. E., Kershner, D. L., Manohar, S. K., Ray, A., Scherr, E. M., Sun, Y., Tang, X. and Epstein, A. J., The polyanilines: processing, molecular weight, oxidation state and derivatives, Polymer Preprints, 30 (1989) 147-148
41.Syed, A. A. and Dinesan, M. K., Review:Polyaniline-A novel polymeric material ,Talanta, 38 (1991) 815-837
42.駱永建,腎功能檢測中尿素與尿酸生化感測器之研究,東海大學化學工程所博士論文,2006年。43.Lin, S. M. and Wen, T. C., Electrochemical synthesis and properties on thermally prepared RuO2 electrodes”, Electrochim. Acta, 39(1994) 393-400.
44.李美嬅,聚苯胺複合膜在非水溶液中之性質分析與在鋰二物電池中充放電性質,東海大學化學工程所碩士論文,2001年。45.Nunziante, P. and Pistoia, G., Factors affecting the growth of tick polyaniline films by the cyclic voltammetry trchnique, Electrochim.Acta, 34 (1998) 355-361.
46.Liang, L., Liu, J., Windisch Jr, C. F., Exarhos, G. J. and Liu, Y., Direct assembly of large arrays of oriented conducting polymer nanowires, Angew. Chem., 41 (2002) 3665-3668.
47.Stejskal, J., Sapurina, I., Prokes, J. and Zemek,J., In-situ polymer- ized polyaniline films, Synth. Met., 105 (1999) 195-202.
48.Venancio, E. C., Costa, C. A. R., Machado, S. A. S. and Motheo, A. J., AFM study of the initial stages of polyaniline growth on ITO electrode, Electrochem. Commun., 3 (2001) 229-233.
49.Mandic, Z., Duic, L. and Kovacicek, F., The influence of counter-ions on nucleation and growth of electrochemically synthesized polyaniline film, Electrochim. Acta, 42 (1997) 1389-1402.
50.McManus, P. M., Cushaman, R. J. and Yang, S. C., Influence of oxidation and protonation on the electrical conductivity of poly-
aniline, J. Phys.Chem., 91 (1987) 744-747.
51.Murugesan, R. and Subramanian,E., Effect of organic dopants on electrodeposition and characteristics of polyaniline under the varying influence of H2SO4 and HClO4 electrolyte media, Mater. Chem. Phys., 80 (2003) 731-739.
52.Guo, X. W., Jiang, Y. F., Zhai, C. Q., Lu, C. and Ding, W. J., Pre- paration of even polyaniline film on magnesium alloy by pulse potentiostatic method, Synth. Met., 135 (2003) 169-170.
53.Aoki, K. and Tano, S., Simultaneous occurrence of polymerization and decomposition of polyaniline films, Electrochim. Acta, 50 (2005) 1491-1496.
54.Fuertes, A. B. and Nevskaia, D. M., Template synthesis of meso- porous carbons from mesostructured silica by vapor deposition polymerization, J. Mater. Chem., 13 (2003) 1843–1846.
55.Fuertes, A. B., Low-cost synthetic route to mesoporous carbons with narrow pore size distributions and tunable porosity through silica xerogel templates, Chem. Mater, 16 (2004) 449-455.
56.Guo, W., Su, F. and Zhao, X. S., Ordered mesostructured carbon templated by SBA-16 Silica, Carbon, 43 (2005) 2423–2426.
57.Kim, J., Lee, J. and Hyeon, T., Direct synthesis of uniform meso-porous carbons from the carbonization of as-synthesized silica/
triblock copolymer nanocomposites, Carbon, 42 (2004) 2711–2719.
58.Hu, Q., Pang, J., Wu, Z. and Lu, Y., Tuning pore size of mesoporous carbon via confined activation process, Carbon, 44 (2006) 1349- 1352.
59.Molina-Sabio, M., Rodriguez-Reinoso, F., Caturla, F. and Selles, M. J., Porosity in granular carbons activated with phosphoric acid Carbon, 33 (1995) 1105-1113.
60.Hayashi, J., Kazehaya, A., Muroyama, K. and Watkinson, A. P., Preparation of activated carbon from lignin by chemical activation, Carbon, 38 (2000) 1873-1878.
61.Auer, E., Freund, A., Pietsch, J. and Tacke, T., Carbons as supports for industrial precious metal catalysts, Appl Catal A, 173 (1998)259–271.
62.Ozkara, S. and Aksoylu, A. E., Selective low temperature carbon monoxide oxidation in H2-rich gas streams over activated carbon supported catalysts, Appl Catal A, 251 (2003) 75–83.
63.Ikenaga, N., Tsuruda. T., Senma, K., Yamaguchi, T., Sakurai, Y. and Suzuki, T., Dehydrogenation of ethylbenzene with carbon dioxide using activated carbon-supported catalysts, Ind Eng Chem Res, 39 (2000) 1228–34.
64.Koranyi, T. I., Rozanov, V., Kremo, R. and Paal, Z. Activation of carbon-supported cobalt–molybdenum catalysts in thiophene hydridesulfurization, J Mol Catal, 63 (1990) 31–41.
65.Yu, H., Kennedy, E. M., Azhar, U. M. and Dlugogorski, B. Z. Catalytic hydro-dehalogenation of halon 1211 (CBrClF2) over carbon-supported palladium catalysts, Appl Catal B, 44 (2003)253–61.
66.柯威罕,以電沉積法製備氧化鈷薄膜陽極之修飾及其充放電性質,東海大學化學工程所碩士論文,2006年。67.李怡德,氣相沉積法製備丙烯聚合反應觸媒之研究,東海大學化學工程所碩士論文,2006年。68.李之瑜,奈米晶體氧化鋁:鑑定與催化反應,東海大學應用化學所碩士論文,2006年。69.Ertl, G., Knozinger, H. and Weitkamp, J., Handbook of heterogeneous catalysis, vol 3, VCH D-69451 Weinheim (1997) p.1508.
70.謝哲松,”微生物生物學”,國立編譯館出版,1995年,p.531