跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/07 14:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張書豪
研究生(外文):Shu-Hao Chang
論文名稱:中孔碳之製備與應用於電流式葡萄糖感測器
指導教授:杜景順
學位類別:碩士
校院名稱:東海大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
中文關鍵詞:電流式葡萄糖感測器葡萄糖氧化酵素抗壞血酸乙醯氨酚靈敏度中孔碳感測器
相關次數:
  • 被引用被引用:4
  • 點閱點閱:373
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文製備具有主要孔徑為10nm的中孔碳,以其作為GOx之載體,應用在GOx/中孔碳/Au/Al2O3電極的製備上,並在不同氣體條件下(氮氣與氧氣)進行葡萄糖的感測,探討其感測特性與機制。此外,本篇論文中亦利用Ferrocene作為氧化還原媒子,以循環伏安法製備GOx/PANI-Ferrocene/Au/Al2O3電極,在與GOx/中孔碳/Au/Al2O3電極相同的感測條件下進行葡萄糖的感測,並對上述兩電極之感測特性進行比較與探討。
以製備所得之GOx/中孔碳/Au/Al2O3電極在氮氣環境與pH 7.0條件下,感測pH 7.0 感測葡萄糖之線性範圍為0.25~1 µM,感測之靈敏度為1089 µA mM-1cm-2,而在相同之系統,但在氧氣環境下對葡萄糖感測的線性範圍有二,在低濃度時為0.25~1 µM,其靈敏度為1613 µA mM-1cm-2;而在高濃度的線性範圍則為0.1~2 mM,感測靈敏度為0.92 µA mM-1cm-2。而在氮氣環境下,尿酸、乙醯氨酚與抗壞血酸的干擾均極小;但在氧氣環境下則容易受尿酸與抗壞血酸的干擾。
以GOx/PANI-Ferrocene/Au/Al2O3為感測電極在20℃、pH 7.0與氮氣條件下,感測葡萄糖之線性範圍為0.01~0.1mM,感測靈敏度為6.65 µA mM-1cm-2。在相同系統中,於氧氣環境下對葡萄糖感測線性範圍為0.001~0.3 mM,感測之靈敏度為5.59 µA mM-1cm-2。以GOx/PANI-Ferrocene/Au/Al2O3為感測電極時,不論在氮氣或氧氣下,抗壞血酸及尿酸的干擾均不大,對靈敏度與回應電流的影響均極小;但是當溶液中含有乙醯氨酚時,則容易受到乙醯氨酚的干擾。
目錄
摘要………………………………………………………………………I
Abstract…………………………………………………………………III
目錄……………………………………………………………………VI
表目錄…………………………………………………………………XII
圖目錄………………………………………………………………XV

第一章 緒論……………………………………………………………1
1-1 葡萄糖之檢測…………………………………………………1
1-2 生化感測器………………………………………………………3
1-2-1 生化感測器之構造與原理…………………………………3
1-2-2 電流式葡萄糖生化感測器…………………………………7
1-2-2-1 電子傳遞媒介物……………………………………8
1-2-2-1-a 電子傳遞媒介物與二茂鐵………………………10
1-2-2-2 中孔性材料在葡萄糖生化感測器上之應用………12
1-2-2-3 導電性高分子應用於葡萄糖生化感測器.................16
1-3 共軛導電性高分子.....................................18
1-3-1 共軛導電性高分子之導電機制...........................................20
1-3-2 聚苯胺之結構……………………………………………24
1-3-3 聚苯胺之聚合……………………………………………27
1-4 中孔碳之製備與性質…………………………………………31
1-4-1 模板法製備中孔碳材 ……………………………………31
1-4-2 直接合成法製備中孔碳材………………………………32
1-4-3 中孔碳材之應用…………………………………………33
1-5 研究動機………..…………………………………………34
第二章 實驗程序與設備……………………………………………36
2-1 實驗試劑與藥品………………………………………………36
2-2 實驗設備與儀器………………………………………………38
2-3 實驗程序與方法……………………………………………40
2-3-1 GOx/PANI-Ferrocene電極之製備………………………41
2-3-1-1 Au/Al2O3電極之製備 …………………………………41
2-3-1-2 PANI-Ferrocene電極之製備…………………………45
2-3-1-3 GOx於PANI-Ferrocene電極上之酵素固定化 ……49
2-3-2 中孔碳酵素電極之製備…………………………………49
2-3-2-1 中孔碳材之製備……………………………………50
2-3-2-2 中孔碳材之酵素固定化 ……………………………53
2-3-2-3 中孔碳酵素電極之製備……………………………53
2-3-3 中孔碳之性質分析………………………………………55
2-3-3-1 穿透式電子顯微鏡之分析……………………………55
2-3-3-2 以BET中孔碳之孔洞與表面積實驗(BET)…………55
2-4 GOx/PANI-Frrocene 葡萄糖生化感測器之感測性質測定……65
2-4-1 Ferrocene對感測之影響的測定……………………………65
2-4-2 葡萄糖感測性質測定 ……………………………………65
2-5 中孔碳製備葡萄糖生化感測器之感測性質測定……………66
第三章 結果與討論……………………………………………………68
3-1 中孔碳材料之製備與性質分析………………………………68
3-1-1 除矽方法之影響 …………………………………………68
3-1-2 以HF水溶液除矽:球磨時間之影響 ……………………79
3-1-3 以HF水溶液除矽:除矽次數之影響……………………88
3-1-4 以HF水溶液除矽:P/Si比值之影響 ……………………92
3-1-5 中孔碳之TEM及EDS分析………………………………97
3-2 PANI-Ferrocene薄膜之製備與性質分析……………………101
3-2-1 PANI-Ferrocene薄膜之製備………………………………101
3-2-2 PANI-Ferrocene薄膜之性質分析…………………………103
3-3 GOx/PANI-Ferrocene/Au/Al2O3電極與GOx/中孔碳/Au/Al2O3
電極酵素固定化之分析………………………………………105
3-3-1 GOx/PANI-Ferrocene/Au/Al2O3電極之酵素固定化分析
……………………………………………………………105
3-3-2 GOx/中孔碳/Au/Al2O3電極分析…………………………108
3-4 GOx/PANI-Ferrocene電極之電化學反應性質………………115
3-4-1 GOx/PANI-(Ferrocene)/Au/Al2O3電極的循環伏安圖譜
……………………………………………………………115
3-4-2 氮氣環境下GOx/PANI-Ferrocene/Au/Al2O3電極之循環
伏安法圖譜與極化曲線…………………………………120
3-4-3 氧氣環境下之GOx/PANI-Ferrocene/Au/Al2O3電極的循環
伏安圖譜與極化曲線……………………………………124
3-4-4 氮氣環境下GOx/PANI-Ferrocene/Au/Al2O3電極之感測性
質…………………………………………………………128
3-4-5 氧氣環境下GOx/PANI-Ferrocene/Au/Al2O3電極之感測性
質………………………………………………………134
3-4-6 氧氣流量對GOx/PANI-Ferrocene電極之感測性質的影響
……………………………………………………………138
3-4-7 溫度對GOx/PANI-Ferrocene/Au/Al2O3電極之感測性質的
影響………………………………………………………151
3-4-8 pH值對GOx/PANI-Ferrocene/Au/Al2O3電極之感測性質的
影響…………………………………………………………170
3-4-9 GOx/PANI-Ferrocene/Au/Al2O3電極感測之選擇性 ……189
3-4-10 氮氣與氧氣下GOx/PANI-Ferrocene電極之壽命……222
3-5 GOx/中孔碳/Au/Al2O3電極之電化學反應性質………………227
3-5-1 氮氣環境下之GOx/中孔碳/Au/Al2O3素電極的循環伏安圖
譜與極化曲線……………………………………………227
3-5-2 氧氣環境下之GOx/中孔碳/Au/Al2O3的循環伏安圖譜與極
化曲線……………………………………………………230
3-5-3 氮氣環境下GOx/中孔碳/Au/Al2O3電極之感測性質…233
3-5-4 氧氣環境下GOx/中孔碳/Au/Al2O3電極之感測性質…236
3-5-5 氧氣流量對GOx/中孔碳/Au/Al2O3電極之感測性質的影響
……………………………………………………………236
3-5-6 溫度對GOx/中孔碳/Au/Al2O3電極之感測性質的影響
……………………………………………………………250
3-5-7 pH值對GOx/中孔碳/Au/Al2O3電極之感測性質的影響
……………………………………………………………269
3-5-8 GOx/中孔碳/Au/Al2O3電極感測之選擇性………………294
3-5-9 GOx/中孔碳/Au/Al2O3電極之老化………………………314
第四章 綜合討論……………………………………………………320
4-1 GOx/PANI-Ferrocene/Au/Al2O3電極與GOx/中孔碳/Au/Al2O3電
極在靈敏度之比較……………………………………………320
4-1-1 氮氣及氧氣下GOx/PANI-Ferrocene/Au/Al2O3電極與GOx/
中孔碳/Au/Al2O3電極之比較…………………………320
4-1-2 氧氣流量對GOx/PANI-Ferrocene/Au/Al2O3電極與GOx/中
孔碳/Au/Al2O3電極感測特性之影響與比較…………333
4-1-3 溫度對GOx/PANI-Ferrocene/Au/Al2O3電極與GOx/中孔碳/Au/Al2O3電極感測性質影響之比較…………………337
4-1-4 pH下GOx/PANI-Ferrocene/Au/Al2O3電極與GOx/中孔碳/
Au/Al2O3電極感測性質影響之比較……………………347
4-2 GOx/PANI-Ferrocene/Au/Al2O3電極與GOx/中孔碳/Au/Al2O3電
極在選擇性之比較……………………………………………356
4-3 GOx/PANI-Ferrocene/Au/Al2O3電極與GOx/中孔碳/Au/Al2O3電
極老化之比較…………………………………………………366
4-4 GOx/PANI-Ferrocene/Au/Al2O3電極與GOx/中孔碳/Au/Al2O3電
極回應時間之比較.........................................384
4-5 PANI-Ferrocene/Au/Al2O3電極與PANI/Au/Al2O3電極之較....389
4-6 GOx/PANI-Ferrocene/Au/Al2O3電極與GOx/中孔碳/Au/Al2O3電
極感測性質之綜合比較.......................................391
第五章 結論與建議…………………………………………………374
參考文獻………………………………………………………………380
參考文獻

1.林志達,”經濟型血糖感測器之製作及市售電及片之評估”,
中原大學醫學工程學系,2002年。
2.許曉清,”常用臨床檢驗手冊”,藝軒圖書,2001年。
3.Turner, A. P. F., Karube, I. and Wilson, G. S., Biosensor: Funda- mentals and applications, Oxford University Press, New York, (1989) p.428.
4Lvova, L., Martinelli, E., Mazzone, E., Pede, A., Paolesse, R., Natale, C. D and D’Amico, A., Electronic tongue based on an array of metallic potentiometric sensors, L. Lvova et al. / Talanta, 70 (2006) 833–839.
5Patchett, R. A., Kelly, A. F. and Kroll,R.G., Investigation of a simple amperometric electrode system to rapidly quantify and detect bacteria in foods, The Journal of applied bacteriology, 66 (1989)49-55.
6Lorimer, J. P., Jagit, K. and Mason, T. J., An inexpensive and robust conductance electrode, Talanta, 32 (1985) 212-214.
7.Tuma, P., Opekar, F., Jelinek, I. and Stulik, K., A capillary electro- phoresis conductometric detector based on measurement of the conductivity of a plastic hydrophilic strip, Electroanalysis, 11(1999) 1022-1026.
8.Joseph, W., Amperometric biosensors for clinical and therapeutic drug monitoring : a review, J. Pharm. Biomed. Anal., 19 (1999) 47-53.
9.Clark, L. C., Jr. and Lyons, C., Electrode system for continuous monitoring in cardiovascular surgery, Ann. NY Acad. Sci., 102 (1962) 29-45
10.Nien, P. C., Tung, T. S. and Ho, K. C., Amperometric glucose
sensors based on entrapment of glucose oxidase in a poly(3,4-ethyl-enedioxythiophene) film, Electroanalysis, 18 (2006) 1408-1415.
11.Oyama, T. J., Rajagopalan, R. and Heller, A., Glucose electrodes based on cross-linked bis(2,2'-bipyridine) chloroosmium(+/2+) complexed poly(1-vinylimidazole) films, Anal. Chim. Acta, 65
(1993) 3512-3517.
12.Kase, Y. and Muguruma, H., Amperometric glucose biosensor based on mediated electron transfer between immobilized glucose oxidase and plasma polymerized thin film of dimethylaminomethyl ferrocene on sputtered glod electrode ,Anal. Sci., 20 (2004) 1143-1146.
13.Chuang, C. L., Wang, Y. J. and Lan, H. L., Amperometric glucose sensors based on ferrocene-containing B-polyethylenimine and immobilized glucose oxidase, Anal. Chim. Acta, 353 (1997) 37-44.
14.Li, C. X., Zeng, Y. L. and Tang, C. R., Glucose biosensor based on carbon/PVC-COOH/ferrocene composite with covalently immobili- zed enzyme, Chinese Chemical Letters, 16 (2005) 1357-1360.
15.Zeng, G. M., Tang, L., Shen, G. L., Huang, G. H. and Niu, C. G., Determination of trace chromium(VI) by an inhibition based enzyme biosensor incorporating an electropolymerized aniline membrane and ferrocene as electron transfer mediator, Intern. J. Environ. Anal. Chem., 84 (2004) 761-774.
16.Cass, A. E. G., Davis, G., Francis, G. D., Hill, H. A. O., Aston, W. J., Higgins, I. J., Plotkin, E. V., Scott, L. D. L. and Turner, A. P. F., Ferrocene-mediated enzyme electrode for amperometric determination of glucose, Anal. Chem., 56 (1984) 667-671.
17.Ghica, E. M. and Brett, C. M. A., A glucose biosensor using methyl viologen redox mediator on carbon film electrodes, Anal. Chim. Acta, 532 (2005) 145–151.
18.Zhong, X., Yuan, R., Chai, Y., Dai, J., Liu, Y. and Tang, D., An amperometric biosensor for glucose based on self-assembling nano-particles and electrosynthesis of poly-o-diaminobenzene on the prussian blue-modified gold electrode, Anal. Lett., 38 (2005) 1085-
1097.
19.Deng, X. H., Kan, X. W., Yu, Y., Zhang, W. Z., Liu, H. Y. and Fang, B., Electrochemical and catalytic properties of ferrocene/
L-cysteine modified electrode”,Acta Phys. –Chim. Sin., 21 (2005) 1399-1402.
20.Chen, C. H., Li, H. and Liu, C. H., Research progresses on ferrocene and its derivatives modified electrodes, Chinese Journal of Electron Devices, 27 (2004) 522-526.
21.Hodak, J., Etchenique, R., Calvo, E. J., Singhal, K. and Bartlett, P. N., Layer-by-layer self-assembly of glucose oxidase with a poly(allylamine)ferrocene redox mediator, Langmuir, 13 (1997) 2708-2716.
22.Palmisano, F., Zambonin, P. G., Centonze, D. and Quinto, M., A disposable, reagentless, third-generation glucose biosensor based on overoxidized poly(pyrrole)/tetrathiafulvalene-tetracyanoquinodi-methane composite, Anal. Chem., 74 (2002) 5913-5918.
23.Kulys,J., The carbon paste electrode encrusted with a microreactor as glucose biosensor, Biosensors & Bioelectronics, 14 (1999) 473- 479.
24.Han, Y. J., Watson, J. T., Stucky, G. D. and Butler, A., Catalytic activity of mesoporous silicate-immobilized chloroperoxidase, Journal of Molecular Catalysis B: Enzymatic ,17 (2002),1–8.
25.Hudson, S., Magner, E., Cooney, J. and Hodnett, B. K. Methodology for the immobilization of enzymes onto mesoporous materials, J. Phys. Chem. B, 109 (2005) 19496-19506.
26.Sotiropoulou, S., Vamvakaki, V. and Chaniotakis, N. A., Stabilization of enzymes in nanoporous materials for biosensor applications,Biosensors & Bioelectronics, 20 (2005) 1674–1679.
27.Zhao, B., Shi, B. and Ma, R., Immobilization of papain on the mesoporous molecular sieve MCM-48, Engineering in Life Science, 5 (2005) 436-441.
28.Lee, B. D., Lee, J. W., Kim, J. B., Kim, J. Y., Na, H. B., Kim, B. K., Shin, C. H., Kwak, J. H., Dohnalkova, A., Grate, J. E., Hyeon, T. and Kim, H. D., Simple fabrication of a highly sensitive and fast glucose biosensor using enzymes immobilized in mesocellular carbon foam, Adv. Mater., 17 (2005) 2828–2833.
29.Wu, B. Y., Hou, S. H., Yin, F., Zhao, Z. X., Wang, Y. Y., Wng, X. S. and Chen, Q., Amperometric glucose biosensor based on multi-layer films via layer-by-layer self-assembly of multi-wall carbon nanotubes,gold nanoparticles and glucose Oxidase on the Pt electrode, Biosensors & Bioelectronics, 22 (2007) 2854-2860.
30.Dai, Z. H., Fang, M., Bao, J. C., Wang, H. S. and Lu, T. H., An amperometric glucose biosensor constructed by immobilizing glucose oxidase on titanium-containing mesoporous composite material of no. 41 modified screen-printed electrodes, Anal. Chim. Acta, 591 (2007) 195-199.
31.Sharma, A. L., Singhal, R., Kumar, A., Krishan, R., Pande, K. and Malhotra, B. D., Immobilization of glucose oxidase onto electrochemically prepared poly(aniline-co-fluoroaniline) films, J. Appl. Polym. Sci., 91 (2004) 3999–4006.
32.Borole, D. D., Kapadi, U. R., Mahulikar, P. P. and Hundiwale, D. G., Glucose oxidase electrodes of a terpolymer poly(aniline-co-o-anisidine-co-o-toluidine) as biosensors, Eur. Polym. J., 41 (2005) 2183–2188.
33.Ma, M. M., Qu, L. T. and Shi, G. Q., Glucose oxidase electrodes based on microstructured polypyrrole films, Journal of Applied Polymer Science, 98 (2005) 2550-2554.
34.李忠哲,聚苯胺之製備與性質探討及其鋰二次電池之應用,東海大學化學工程所碩士論文,1998年。
35.魏喬建,聚苯胺/不鏽鋼電極之製備動力與其在鋰電池中之充放電行為,東海大學化學工程所碩士論文,2001年。
36.Kitani, A., Kaya, M. and Sasaki, K., Performance study of aqueous polyaniline batteries, J. Electrochem. Soc., 133 (1986) 1069-1073.
37.林建中,高分子材料性質與應用,高立圖書有限公司,87年,p.450。
38.The 2000 Nobel Prize in Chemistry, The Royal Swedish Scademy of Sciences,October 10,2000.
http:/www.nobel.se/chemistry/laureates/2000/public.html.
39.吳詩澤,電聚合聚苯胺複合膜與其在鋰二次電池之應用,東海大學化學工程所碩士論文,1999年。
40.MacDiarmid, A. G., Asturias, G. E., Kershner, D. L., Manohar, S. K., Ray, A., Scherr, E. M., Sun, Y., Tang, X. and Epstein, A. J., The polyanilines: processing, molecular weight, oxidation state and derivatives, Polymer Preprints, 30 (1989) 147-148
41.Syed, A. A. and Dinesan, M. K., Review:Polyaniline-A novel polymeric material ,Talanta, 38 (1991) 815-837
42.駱永建,腎功能檢測中尿素與尿酸生化感測器之研究,東海大學化學工程所博士論文,2006年。
43.Lin, S. M. and Wen, T. C., Electrochemical synthesis and properties on thermally prepared RuO2 electrodes”, Electrochim. Acta, 39(1994) 393-400.
44.李美嬅,聚苯胺複合膜在非水溶液中之性質分析與在鋰二物電池中充放電性質,東海大學化學工程所碩士論文,2001年。
45.Nunziante, P. and Pistoia, G., Factors affecting the growth of tick polyaniline films by the cyclic voltammetry trchnique, Electrochim.Acta, 34 (1998) 355-361.
46.Liang, L., Liu, J., Windisch Jr, C. F., Exarhos, G. J. and Liu, Y., Direct assembly of large arrays of oriented conducting polymer nanowires, Angew. Chem., 41 (2002) 3665-3668.
47.Stejskal, J., Sapurina, I., Prokes, J. and Zemek,J., In-situ polymer- ized polyaniline films, Synth. Met., 105 (1999) 195-202.
48.Venancio, E. C., Costa, C. A. R., Machado, S. A. S. and Motheo, A. J., AFM study of the initial stages of polyaniline growth on ITO electrode, Electrochem. Commun., 3 (2001) 229-233.
49.Mandic, Z., Duic, L. and Kovacicek, F., The influence of counter-ions on nucleation and growth of electrochemically synthesized polyaniline film, Electrochim. Acta, 42 (1997) 1389-1402.
50.McManus, P. M., Cushaman, R. J. and Yang, S. C., Influence of oxidation and protonation on the electrical conductivity of poly-
aniline, J. Phys.Chem., 91 (1987) 744-747.
51.Murugesan, R. and Subramanian,E., Effect of organic dopants on electrodeposition and characteristics of polyaniline under the varying influence of H2SO4 and HClO4 electrolyte media, Mater. Chem. Phys., 80 (2003) 731-739.
52.Guo, X. W., Jiang, Y. F., Zhai, C. Q., Lu, C. and Ding, W. J., Pre- paration of even polyaniline film on magnesium alloy by pulse potentiostatic method, Synth. Met., 135 (2003) 169-170.
53.Aoki, K. and Tano, S., Simultaneous occurrence of polymerization and decomposition of polyaniline films, Electrochim. Acta, 50 (2005) 1491-1496.
54.Fuertes, A. B. and Nevskaia, D. M., Template synthesis of meso- porous carbons from mesostructured silica by vapor deposition polymerization, J. Mater. Chem., 13 (2003) 1843–1846.
55.Fuertes, A. B., Low-cost synthetic route to mesoporous carbons with narrow pore size distributions and tunable porosity through silica xerogel templates, Chem. Mater, 16 (2004) 449-455.
56.Guo, W., Su, F. and Zhao, X. S., Ordered mesostructured carbon templated by SBA-16 Silica, Carbon, 43 (2005) 2423–2426.
57.Kim, J., Lee, J. and Hyeon, T., Direct synthesis of uniform meso-porous carbons from the carbonization of as-synthesized silica/
triblock copolymer nanocomposites, Carbon, 42 (2004) 2711–2719.
58.Hu, Q., Pang, J., Wu, Z. and Lu, Y., Tuning pore size of mesoporous carbon via confined activation process, Carbon, 44 (2006) 1349- 1352.
59.Molina-Sabio, M., Rodriguez-Reinoso, F., Caturla, F. and Selles, M. J., Porosity in granular carbons activated with phosphoric acid Carbon, 33 (1995) 1105-1113.
60.Hayashi, J., Kazehaya, A., Muroyama, K. and Watkinson, A. P., Preparation of activated carbon from lignin by chemical activation, Carbon, 38 (2000) 1873-1878.
61.Auer, E., Freund, A., Pietsch, J. and Tacke, T., Carbons as supports for industrial precious metal catalysts, Appl Catal A, 173 (1998)259–271.
62.Ozkara, S. and Aksoylu, A. E., Selective low temperature carbon monoxide oxidation in H2-rich gas streams over activated carbon supported catalysts, Appl Catal A, 251 (2003) 75–83.
63.Ikenaga, N., Tsuruda. T., Senma, K., Yamaguchi, T., Sakurai, Y. and Suzuki, T., Dehydrogenation of ethylbenzene with carbon dioxide using activated carbon-supported catalysts, Ind Eng Chem Res, 39 (2000) 1228–34.
64.Koranyi, T. I., Rozanov, V., Kremo, R. and Paal, Z. Activation of carbon-supported cobalt–molybdenum catalysts in thiophene hydridesulfurization, J Mol Catal, 63 (1990) 31–41.
65.Yu, H., Kennedy, E. M., Azhar, U. M. and Dlugogorski, B. Z. Catalytic hydro-dehalogenation of halon 1211 (CBrClF2) over carbon-supported palladium catalysts, Appl Catal B, 44 (2003)253–61.
66.柯威罕,以電沉積法製備氧化鈷薄膜陽極之修飾及其充放電性質,東海大學化學工程所碩士論文,2006年。
67.李怡德,氣相沉積法製備丙烯聚合反應觸媒之研究,東海大學化學工程所碩士論文,2006年。
68.李之瑜,奈米晶體氧化鋁:鑑定與催化反應,東海大學應用化學所碩士論文,2006年。
69.Ertl, G., Knozinger, H. and Weitkamp, J., Handbook of heterogeneous catalysis, vol 3, VCH D-69451 Weinheim (1997) p.1508.
70.謝哲松,”微生物生物學”,國立編譯館出版,1995年,p.531
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊