(34.204.201.220) 您好!臺灣時間:2021/04/19 17:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許譽瀕
研究生(外文):Syu, Yu-Pin
論文名稱:醋酸乙酯反應蒸餾程序之動態模擬與整廠控制
論文名稱(外文):Dynamic Simulation and Plantwide Control for an Ethyl Acetate Process
指導教授:黃琦聰
指導教授(外文):Huang, Chi-Tsung
學位類別:碩士
校院名稱:東海大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:71
中文關鍵詞:醋酸乙酯反應蒸餾反應器驟沸槽控制儀回流線電腦整廠控制
外文關鍵詞:dynamicdesignsystem
相關次數:
  • 被引用被引用:0
  • 點閱點閱:343
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
醋酸乙酯為工業界之重要有機溶劑,本研究針對生產醋酸乙酯反應蒸餾製程系統發展一套動態模擬程式,為了能達到醋酸乙酯之產率,架構出一套整廠基礎控制策略,並且進行動態之模擬測試。
整廠製程包含最主要的反應蒸餾塔、純化塔以及除水塔,並包含分相器,其中分相器之有機相流量使其大部份回流至反應塔內,剩餘的部分進入純化塔純化醋酸乙酯,而水相進入除水塔,此製程額外還增設了預先反應器與驟沸槽,使得整廠製程更能降低能源耗費量。
本研究提出的整廠製程之基礎控制策略,將回流線皆採用流量控制,產物組成控制均採用一般工業界所常用的塔內某點之溫度控制來取代線上組成控制儀;而進料部分,利用反應塔之再沸器內液位高低來控制醋酸進料流量,乙醇進料則為流量控制。
由電腦程式模擬結果發現,本研究提出的控制策略,對於兩總體進料之流量與組成干擾,能保有一定之控制效益,並對產物醋酸乙酯的濃度無大幅度影響。
The idea of reactive distillation is not new; however, it has received renewed attention in recent years. According to Malone and Doherty (2000), a lot of articles concerning the reactive distillation have been published during last two decades. However, most of these publications are concerned about process design, chemical reaction, and equilibrium, etc. Only very few of these provide guidelines to practical decision on operating strategies, control system design, instrumentation, etc. The study explores the plantwide control of an ethyl acetate reactive distillation system. A steady-state design for an ethyl acetate reactive distillation process consisting of a pre-reactor, a reactive distillation column, a flash drum, and two recovery columns using Aspen Plus software was investigated by a previous graduate student. Dynamic simulation and controllability studies for the reactive distillation system with a proposed heuristic control structure are investigated in this study. A rigorous dynamic simulator for the whole plant based on Franks’(1972) physical model was developed. The production rate is determined by the feed flow rate of ethanol. To avoid the ”snowball effect”, the flow rates of the two-recycle streams are fixed, and the makeup fresh feed acetic acid is brought on level control for the control structure. Simulation results also demonstrated that the proposed control structure without using any on-line analyzer could maintain the product purity very well even in the presence of disturbance changes occurred either in the acetic acid feed or in the ethanol feed.
目錄

摘要---------------------------------------------------------------------------І
Abstract-----------------------------------------------------------------------II
致謝---------------------------------------------------------------------------III
目錄---------------------------------------------------------------------------ІV
表目錄------------------------------------------------------------------------VI
圖目錄------------------------------------------------------------------------VII
第一章 緒論---------------------------------------------------------------1
第二章 文獻回顧---------------------------------------------------------3
第三章 動力學與熱力學模式------------------------------------------9
3.1 簡介----------------------------------------------------------9
3.2 反應動力學模式-------------------------------------------9
3.3 熱力學模式-------------------------------------------------11
3.4 物理性質----------------------------------------------------16
第四章 動態模式化------------------------------------------------------24
4.1 簡介----------------------------------------------------------24
4.2 基本假設條件----------------------------------------------25
4.3 平衡板動態數學模式-------------------------------------27
4.4 再沸器之動態數學模式----------------------------------29
4.5 分相器與冷凝器之動態數學模式----------------------30
4.6 驟沸器之動態數學模式----------------------------------31
4.7 填充式反應器之動態數學模式-------------------------32
4.8 控制器模組-------------------------------------------------34
4.9 數值方法----------------------------------------------------36
4.10 計算流程--------------------------------------------------36
第五章 整廠控制與動態模擬------------------------------------------41
5.1 整廠製程穩態設計----------------------------------------41
5.2 整廠之基礎控制策略-------------------------------------43
5.3 干擾動態測試----------------------------------------------50
第六章 結論與未來展望------------------------------------------------61
參考文獻---------------------------------------------------------------------62
附錄 各塔之穩態數據---------------------------------------------------66


表目錄

表3.1 物質之反應生成熱-------------------------------------------------11
表3.2 醋酸乙酯反應蒸餾系統之共沸物物性資料------------------ 12
表3.3 NRTL參數----------------------------------------------------- -----14
表3.4 Extened Antoine equation常數-----------------------------------16
表3.5 臨界物理常數與汽液體焓值-------------------------------------19
表4.1 Stream array STRM (IS,IP)----------------------------------------38
表5.1 整廠物流表-------------------------------------------------------47、48
表5.2 各塔之結構數據----------------------------------------------------49
表5.3 儀表與控制設定範圍----------------------------------------------50
表5.4 干擾變化對產品品質之影響-------------------------------------60


圖目錄

圖3.1 二成份系統在一大氣壓下之汽液平衡圖----------------------13
圖3.2 EtOH/EtOAc/H2系統之Binodal Curve-------------------------20
圖3-3 LLE計算流程圖---------------------------------------------------21
圖3-4 汽泡點之計算------------------------------------------------------22
圖3-5 VLE計算流程圖---------------------------------------------------23
圖4.1 蒸餾塔之架構圖----------------------------------------------------24
圖4.2 三相共存平衡板----------------------------------------------------26
圖4.3 汽液兩相平衡板----------------------------------------------------26
圖4.4 再沸器之簡圖-------------------------------------------------------29
圖4.5 冷凝器與分相器之簡圖-------------------------------------------30
圖4.6 驟沸器之簡圖-------------------------------------------------------32
圖4.7 填充式反應器及control volume 示意圖------------------33
圖4.8 重整回饋式PID控制器及程序模擬方塊圖------------------35
圖4.9 平衡板計算流程---------------------------------------------------39
圖4.10 反應蒸餾塔各模組連結示意圖---------------------------------40
圖5.1 反應蒸餾塔之示意圖---------------------------------------------42
圖5.2 整廠控制架構圖-----------------------------------------------------45
圖5.3 製程流程圖(Process Flow Diagram)-----------------------------46
圖5.4 乙醇進料流量改變+10 %------------------------------------------52
圖5.5 乙醇進料流量改變10 %------------------------------------------53
圖5.6 乙醇進料改變之各塔溫度分布變化-----------------------------54
圖5.7 乙醇進料組成改變10 %------------------------------------------55
圖5.8 乙醇進料組成改變之各塔溫度分布變化-----------------------56
圖5.9 醋酸進料組成改變10 %-----------------------------------------58
圖5.10醋酸進料組成改變之各塔溫度分佈變化---------------------59
參考文獻

李永紅、劉家褀與馬沛生, “萃取反應精餾合成高純度乙酸乙
酯” ,石油化工,25,719 (1996).

陳界名,“生產醋酸乙酯之反應蒸餾製程設計”,東海大學化學
工程研究所碩士論文(2006).

Abufares A. A. and Douglas P. L., “Mathematical Modeling and
Simulation of an MTBE Catalytical Distillation Process Using
SpeedUp and Aspen Plus,” Trans. IChemE., 73, part A, 3 (1995).

Agreda V. H., Partin L. R., “Reactive Distillation Process for the
Production of Methyl Acetate,” US Patent 4,435,595 (1984).

Alejski K. and Duprat F., “Dynamic Simulationof the Multicomponent
Reactive Distillation,” Chem. Engn. Sci., 51, 4237 (1996).

Al-Arfaj M. and Luyben W. L., “Effect of Number of Fractionating Trays
on Reactive Distillation Performance,” AIChE J., 46, 2417 (2000a).

Al-Arfaj M. and Luyben W. L., “Control Study of Ethyl tert-Butyl Ether
Reactive Distillation ,” Ind. Eng. Chem. Res., 41, 3784 (2002a).

Al-Arfaj M. and Luyben W. L., “Design and Control of an Olefin
Metathesis Reactive Distillation Column,” Chem. Eng. Sci., 57, 715
(2002b).

Aspen Plus, Steady State Simulation, Version 10.0, Aspen Technology,
Inc. (1998).

Barbosa D. and Doherty M. F., “Design and Minimum Reflux
Calculations for Double-Feed Multicomponent Reactive Distillation
Column,” Chem. Eng. Sci., 43, 1523 (1988).

Backhaus, A. A. “Continuous Process for the Manufacture of Ester,” US
Patent 1,400,849 (1921).

Bock H., Wozny G. and Gutsche B., “Design and Control of a Reactive
Distillation Column Including the Recovery System,” Chem. Engr.
Processing, 36, 101 (1997).

Bisowarno B. H., Tian Y. C. and Tade M. O., “Application of Side
Reactor on ETBE Reactive Distillation,” Chem. Eng. J., 99, 35 (2004).

Burkett R. J. and D. Rossiter, “Choosing the Right Control Structure for
Industrial Distillation Column,” Proc. of Process Control and
Instrumentation 2000, 38 (2000).

Chakrabarti A.; Sharma M. M., “Cationic Ion Exchanger Resins as
Catalyst,” Reactive Polymers , 20(1-2), 1 (1993).

ChemCAD, Process Flow Simulator, Ver5.0, Chemstation Inc., (1998).

Doherty, M. F. and Buzard G., “Reactive Distillation by Design,” Trans.
Inst. Chem. Eng., Part A, 70, 448 (1992).

Doherty M. F. and Malone M. F. Conceptual Design of Distillation
Systems, McGraw-Hill Book Company (2001).

DeGarmo, J. L.; Parulekar, V. N.; Pinjala, V., “Consider Reactive
Distillation,” Chem. Eng. Progress, 3, 43 (1992).

Franks, R. G. E., Modeling and Simulation in Chemical Engineering,
John Wiley & Sons, Inc. (1972)

Gmehline J. and U. Onken, Vapor-Liquid Equilibrium Data Collection, DECHEMA, Chemical Data Series, I, part 1, Verlag & Druckerei Friedrick Bischoff, Frankfurt (1977).

Hangx G., Kwant G., Maessen H., Markusse P. and Urseanu I., “Reaction
Kinetics of the Esterification of Ethanol and Acetic Acid Towards
Ethyl Acetate,” GRD1 CT1999 10596, DSM, European Commission
(2001).

Hayden J. G. and O’Connell J. P., “A Generalized Method for Predicting
Second Virial Coefficients,” Ind. Eng. Chem. Process Des. Dev., 14,
209 (1975).

Higler A. P., Taylor R., Krishna R., “Modeling of a Reactive Separation
Process Using a Nonequilibrium Stage Model,” Computers Chem.
Engng., 22, S111 (1998).

King, C.J., Separation Processes, 2nd ed., McGraw-Hill Book Co. (1980)

Kenig E. Y., Bader H., Goraka A., Beβling B., Adrian T., Schoenmakers
H., “Investigation of Ethyl Acetate Reactive Distillation Process,”
Chem. Eng. Sci., 56, 6185 (2001).

Lee J. H., Dudukovic M. P., “Comparison of the Equilibrium and
Nonequilibrium Models for a Multicomponent Resactive Distillation
Column,” Computers Chem. Engng., 23(1), 159 (1998).

Luyben W. L. and Luyben M. L., Essentials of Process Control,
McGraw-Hill Book Company (1997).

Luyben W. L., Tyreus B. D. and Luyben M. L., Plantwide Process
Control, McGraw-Hill Book Company (1999).

Marek J. and G. Standart, “Vapor-Liquid Equilibrium in Mixtures
Containing an Associating Substance. II. Binary Mixtures of Acetic
Acid at Atmospheric Pressure,” Collection Czechoslov. Chem.
Commun., 20, 1490 (1955).

Malone, M. F. and Doherty, M. F., “Reactive Distillation,” Ind.
Eng.Chem. Res., 39, 3957 (2000).

Reid R. C., J. M. Prausnitz, and B. E. Poling, Properties of Gases and
Liquids, 4th ed., McGraw-Hill Book Company (1987).

Savkovic-Stevanovic J., Misic-Vukovic M., Boncic-Caricic G., Trisovic
B., Jezdic S., “Reactive Distillation with Ion Exchanger,” Separation
Science and Technology, 27, 613 (1992).

Schrans S., Worf S. E. and Baur R., “Dynamic Simulation of Reactive
Distillation: an MTBE Case Study,” Comput. Chem. Engng., 20, S1619
(1996).

Sneesby M. G., Tade M. O., Datta, R. and Smith, T. N., “ETBE
Synthesis via Reactive Distillation. 1. Steady-State Simulation
and Design Aspects,” Ind. Eng. Chem. Res., 36, 1855 (1997).

Subawalla H. and Fair J. R., “Design Guidelines for Solid-Catalyzed
Reactive Distillation Systems,” Ind. Eng. Chem. Res., 38, 3696 (1999).

Tang Y. T., Huang H. P., Chien I-Lung, “Design of a Complete Ethyl
Acetate Reactive Distillation System,” J. Chem. Eng. Japan, 36, 1352
(2003).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔