跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/27 19:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林志燁
研究生(外文):Laurence
論文名稱:類黃酮及兒茶酚與N-甲基吡嗪五氨釕(III)錯合物之氧化還原反應
論文名稱(外文):The Reduction of Flavonoid and Related Catechols by N-Methylpyrazinium Complex of Pentaammineruthenium(III)
指導教授:葉玉堂
指導教授(外文):Andrew Yeh
學位類別:碩士
校院名稱:東海大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:74
中文關鍵詞:類黃酮兒茶酚動力學五氨釕(III)錯合物
外文關鍵詞:FlavonoidCatecholPentaammineruthenium(III)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:341
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:1
RuIII(NH3)5(pzCH3)4+錯合物氧化flavonoids及catechols之反應,屬外圈電子轉移機構,反應速率隨酸濃度増加而遞減,反應計量顯示,flavonoids及catechols均為兩電子還原劑,動力學探討發現第一個電子還原為速率決定步驟。在[H+]= 0.01–1.0 M,μ=1.0 M HClO4/LiClO4,T=25℃條件下,動力學探討結果得k0(H2Q)=(2.4 ± 0.1) ×102 (rutin),(2.95±0.08)×102 ((±)-taxifolin),(4.8±0.1)×102 ((+)-catechin),(4.6±0.2)×102 (pyrocatechol),(4.8±0.3)×10(protocatechuic acid),(2.3±0.3)×10 (tiron);k1(HQ-)=(2.01±0.04)×108 (rutin),(9.32±0.03)×109((±)-taxifolin),(4.4±0.2)×109((+)-catechin),(8.5±0.1)×109(pyrocatechol),(7.0±0.1)×109(protocatechuic acid),(5.93±0.06)×107(4-nitrocatechol),(4.29±0.03)×109(tiron)。從所得k0及k1,利用Marcus理論求得自身氧化還原速率常數k22 (M-1S-1),分別為rutin:5.0×106(H2Q•+/H2Q)、9.0×109(HQ•/HQ-);(+)-catechin:2.5×107(H2Q•+/H2Q)、1.6×1011(HQ•/HQ-);pyrocatechol:2.8×106(H2Q•+/H2Q)、7.0×1010(HQ•/HQ-);protocatechuic acid:3.8×1010(H2Q•+/H2Q)、1.5×1011(HQ•/HQ-);4-nitrocatechol :3.1×1012 (HQ•/HQ-);tiron:4.5×1010(H2Q•+/H2Q)、1.4×1013(HQ•/HQ-)。k22與維他命C相比,不論是H2Q或HQ- 型式,均比維他命C至少大三次冪,可見flavonoids、catechols之反應活性遠較維他命C強,均有較好的抗氧化性。
The oxidation of flavonoids and catechols by Ru(NH3)5(pzCH3)4+ complex undergoes an outer-sphere electron transfer mechanism. The values of k decrease with increasing acid concentration. The stoichiometric studies showed that both flavonoids and catechols were two electron reductants. The rate law of the reaction is interpreted as a rate determining reaction between Ru(III) and flavonoids in the form of H2Q and HQ-, following the rapid scavenge of the radicals thus formed by Ru(III). The kinetic studies of the reaction at [H+] = 0.01-1.0 M rate constants of reaction with k0(H2Q)= (2.4±0.1)×102 (rutin), (2.95±0.08)×102 ((±)-taxifolin), (4.8±0.1)×102 ((+)-catechin), (4.6±0.2)×102 (pyrocatechol), (4.8±0.3)×10(protocatechuic acid), (2.3±0.3)×10(tiron) and k1(HQ-)=(2.01±0.04)×108 (rutin), (9.32±0.03)×109 ((±)-taxifolin), (4.4±0.2)×109 ((+)-catechin), (8.5±0.1)×109 (pyrocatechol), (7.01±0.14)×109 (protocatechuic acid), (5.93±0.06)×107 (4-nitrocatechol), (4.29±0.03)×109 (tiron), respectively at μ= 1.0 M HClO4/LiClO4 and T=25°C. The self-exchange rate constants of the reductants , k22(M-1s-1), calculated on the basis of measured k0, k1, and Marcus theory are rutin: 5.0×106(H2Q•+/H2Q), 9.0×109(HQ•/HQ-); (+)-catechin: 2.5×107(H2Q•+/H2Q), 1.6×1011(HQ•/HQ-); pyrocatechol: 2.8×106(H2Q•+/H2Q), 7.0×1010(HQ•/HQ-); protocatechuic acid: 3.8×1010(H2Q•+/H2Q), 1.5×1011(HQ•/HQ-); 4-nitrocatechol: 3.1×1012 (HQ•/HQ-); tiron: 4.5×1010(H2Q•+/H2Q), 1.4×1013(HQ•/HQ-). The k22 of the flavonoids and catechols are greater than that of the ascorbic acid in both H2Q and HQ- forms by at least three order of magnitude. This implies that the intrinsic reactivity of flavonoids and catechols are greater than that of the ascorbic acid.
總目錄

中文摘要
英文摘要
總目錄
圖目錄
表目錄
第一章 緒 論
第二章 實 驗
一、藥品來源
二、去氧處理
三、隔氧系統之溶液配製
四、合成
五、分析儀器及方法
第三章 結 果
一、光譜鑑定
二、動力學
第四章 討 論
一、吸收光譜
二、反應機構
三、還原劑自身電子轉移反應
第五章 結 論
參考文獻
參考文獻
[1] Y. H. Wei , H. C. Lee, Ex. Biol. Med., 617(2002)
[2] B. Halliwell, R. Aeschbach, J.Loliger, O.I. Aruoma, Fd Chem. Toxic.,33, 601(1995).
[3] P. Greenwald, C.K. Clifford and J.A. Milner, Eur. J. Cancer, 37 , 948(2001)
[4] J. M. Beiler , G. J.Martin. J. Biol. Chem., 407(1947)
[5] J. M. McCord , I. Fridovich, Free Rradic. Biol. Med., 5, 36(1988)
[6]. L. M. Lin, M. H. Lien, A. Yeh, Int. J. Chem. Kin., 37, 126(2005)
[7] J. B. Harborne , C. A. Williams, Phytochemistry, 55, 481(2000)
[8] D. B. McPhail , R. C. Hartlry, P. T. Gardner, G. G. Duthie, J. Agric. Food Chem., 51, 1684(2003)
[9] L. Mira , M. T.Fernanadez , M. Santos, R. Rocha , M. H. Florencio,K. R. Jennings. Free Radical Research., 36, 305(2002)
[10] C. A. Rice-Evans, N. J. Miller, G. Paganga, Free Radic. Biol. Med., 20, 933(1996)
[11] I. Erlund., Nutrition Research., 24, 851(2004)
[12] C. A. Rice-Evans, N. J. Miller, G. Paganga, Trends Plant Sci., 2, 152(1997)
[13] J. E. Brown, H. Khodr, R.C. Hider, C.A. Rice-Evans, Biochem. J.,330, 1173(1998)
[14] J. P. Cornard and J. C. Merlin, J. Inorg. Biochem., 92, 19(2002)
[15] M. T. Fernandez, M. L. Mira, M. H. Floiencio, and K. R. Jennings, J. Inorg. Biochem., 92, 105(2002)
[16] B. A. Bohm, Introduction to Flavonoids, Harwood Academic
Publishers, UK(1998)
[17] N. Salah, N. J. Miller, G. Paganga, L. Tijburg, G. P. Bolwell, C. Rice-Evans, Arch. Biochem. Biophys., 322, 339(1995)
[18] P. Janeiro, A. M. Oliveira Brett., Anal. Chim. Acta., 518, 109(2004)
[19] J. Amesz, Biochim. Biophys. Acta., 301, 35(1973)
[20].R. Guo, P. Wei, W. Liu, J. Pharm. Biomed. Anal., 43, 1580(2007)
[21].P. Janeiro, O. Corduneanu, A. M. O. Brett, Electroanalysis., 17, 1059(2005)
[22] P. Trouillas , P. Marsal , D. Siri ,R. Lazzaroni , C. Calliste, A. Marfak, J. L. Duroux, Food Chem., 88, 571(2004)
[23] J. M. Hoddenbagh , D. H. Macartney, J. Chem. Soc. Dalton Trans., 615(1990)
[24] S.V. Jovanovic, S. Steenken, M. Tosic, B. Marjanovic, G. S. Michael, J. Am. Chem. Soc., 116, 4846(1994)
[25] N. P. Slabbert, Tetrahedron., 33, 821(1977)
[26] J. F. Diehl, Safety of Irradiated Foods. Marcel Dekker Inc., New York (1995)
[27] L. H. Vogt, J. L. Katz, S. E. Wiberley, Inorg. Chem., 4, 1157(1965)
[28] C. Creutz , H. Taube, J. Am. Chem. Soc., 95, 1086(1973)
[29] R. H. Higby, J. Am. Pharm. Assn., 32, 74(1943).
[30] G. J. Majovski, A. J. Lesser, H. C. Lawson , H. O. Carne, and C. H.Thienes, J. Pharmacol. and Exp. Therap., 80, 1(1944)
[31] A. Garg, S. Garg, L. J. D. Zaneveld, A. K. Singla1, Phytother. Res., 15, 655(2001)
[32] L. Armentano, A. Bentsath, T. Beres, S. Ruszynak, A. Szent-Gyorgyi, Deut. med. Woschr., 62, 1325(1936)
[33] H. E. Toma, J. M. Malin., Inorg. Chem., 12, 1039(1973)
[34] M. J. Akhtar, A. Haim, Inorg. Chem., 27, 1608(1988)
[35] S.V. Jovanovic, S. Steenken, M. Tosic, B. Marjanovic, M. G. Simic, J. Am. Chem. Soc., 116, 4846(1994)
[36] M. H. Chen, S. Lee, S. Liu, A. Yeh, Inorg. Chem., 35, 2627(1996)
[37] U. Furholz, A. Haim, J. Phys. Chem., 90, 3686(1986)
[38] J. W. Herbert, D. H. Macartney., J. Chem. Soc. Dalton Trans., 1931 (1986)
[39] P. Ford, De F. P. Rudd, R. Gaunder, H. Taube, J. Am. Chem. Soc., 90,1187(1968)
[40] R. G. Gaunder, H. Taube, Inorg. Chem., 30, 1862(1991)
[41] H. Y. Huang, W. J. Chen, C. C. Yang, A. Yeh, Inorg. Chem., 9, 2627 (1970)
[42] C. A. Tyson, A. E. Martell., J. Am. Chem. Soc., 3379(1968)
[43] S. Steenken, P. Neta., J. Phys. Chem., 83, 1134(1979)
[44] S. Steenken, P. Neta., J. Phys. Chem., 86, 3661(1982)
[45] N. P. Slabbert., Tetrahedron., 33, 821(1977)
[46] S. V. Jovanovic, S. Steenken, Y. Hara, M. G. Simic, J. Chem. Soc., Perkin Trans., 2, 2497(1996)
[47] R. A. Marcus, Ann. Rev. Phys. Chem., 15, 155(1964)
[48] R. A. Marcus, N. Sutin, Biochim. Biophy. Acta., 811, 265(1985)
[49] M. Kimura, S. Yamabe, T. Minato, Bull. Chem. Soc. Jpn., 54, 1699 (1981)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top