跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/21 07:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔣力惠
研究生(外文):Li-Hui Jiang
論文名稱:乳鐵蛋白水解物及EDTA在鮮肉及肉製品中之抗氧化性與抗菌性
論文名稱(外文):The study of bovine lactoferrin hydrolysate and EDTA on antioxidative and antimicrobial activities of fresh meat and meat product
指導教授:郭俊欽郭俊欽引用關係
指導教授(外文):Chun-Chin Kuo
學位類別:碩士
校院名稱:東海大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:165
中文關鍵詞:牛乳鐵蛋白牛乳鐵蛋白水解物EDTA貢丸豬肉微生物TBARS值
外文關鍵詞:bovine lactoferrinbovine lactoferrin hydrolysateEDTAChinese meat ballsporkmicrobiologyTBARS value
相關次數:
  • 被引用被引用:2
  • 點閱點閱:1021
  • 評分評分:
  • 下載下載:184
  • 收藏至我的研究室書目清單書目收藏:0
本試驗利用胃蛋白酶於pH 2.5、37°C的條件下對牛乳鐵蛋白 (bovine lactoferrin; bLF) 進行4小時的水解反應,以製備牛乳鐵蛋白水解物 (bovine lactoferrin hydrolysate; bLFH) 並探討水解物及EDTA的抗氧化性及抗菌性。本試驗共分三個部份,第一部份探討牛乳鐵蛋白及其水解液 (bLFH solution) 的抗菌效果,本實驗先探討不同反應時間 (0、10、20、30、40、50分鐘與1、2、3、4、5、6小時) 下的水解情形,發現水解率隨反應時間的增加而上升,且反應4小時後 (水解率為6.88%),水解反應即達平衡。蛋白質電泳分析證實反應時間愈長,各水解液所含2.55 kD的多胜肽亦明顯增加,而反應4小時的水解液所含低分子量的多胜肽較多。牛乳鐵蛋白及水解4小時之水解液對Staphylococcus aureus ATCC 9144的最小抑菌濃度分別為0.4 mg bLF/mL與0.2 mg bLFH/mL,而牛乳鐵蛋白對Pseudomonas aeruginosa ATCC 14207無抑制效果,但水解液對該菌的最小抑菌濃度為1.6 mg bLFH/mL。反應5及6小時之水解液對 S. aureus與P. aeruginosa的抑菌效果稍有增加,但與反應4小時水解液之抑菌效果沒有顯著區別。第二部分是探討EDTA (添加 250 ppm EDTA)、bLFH (每克肉中添加4 mg冷凍乾燥水解物) 與bLFH+EDTA (每克肉中添加4 mg冷凍乾燥水解物及250 ppm EDTA) 和貯藏時間 (0、2、4及6天) 對非真空包裝 (non-vacuum packaging) 冷藏 (4°C) 豬後腿絞肉之TBARS (thiobarbituric acid reactive substances) 值、非血基質鐵 (nonheme iron) 、總生菌數 (total plate counts)、乳酸菌數 (lactic acid bacterial counts) 及大腸桿菌群數 (coliforms) 之影響。實驗結果發現牛乳鐵蛋白水解物 (bLFH) 似乎會促進脂肪氧化,而bLFH+EDTA組則可能含EDTA,使其TBARS值維持較低,但EDTA組之TBARS值最低。在非血基質鐵方面,bLFH組的非血基質鐵含量較對照組高,bLFH+EDTA組則與對照組無異,而EDTA組之非血基質鐵含量最低。處理組之總生菌數、乳酸菌數及大腸桿菌群數皆低於對照組,顯示添加水解物及/或EDTA能抑制微生物生長。第三部份是探討EDTA (添加 250 ppm EDTA)、bLFH (每克原料肉中添加4 mg冷凍乾燥水解物) 與bLFH+EDTA (每克原料肉中添加4 mg冷凍乾燥水解物及250 ppm EDTA) 和貯藏時間 (0、2、4、6及8天) 對非真空包裝冷藏 (7°C) 貢丸之TBARS值、總生菌數及總生菌數之影響。實驗結果發現牛乳鐵蛋白水解物 (bLFH) 並無抗氧化性,而bLFH+EDTA組則可能含EDTA,使其TBARS值維持較低,但EDTA組之TBARS值最低。結果發現處理組之總生菌數與乳酸菌數皆低於對照組,顯示牛乳鐵蛋白水解物及/或EDTA在加熱過之肉製品仍能抑制微生物生長。
In this study, lactoferrin hydrolysate (bLFH) was prepared by pepsin cleavage of bovine lactoferrin (bLF) at 37°C and pH 2.5, and the purposes of this study are to investigate the anti-microbial and anti-oxidative properties of bLFH and EDTA. The study was divided into three parts. The first part is to investigate the antimicrobial activities of bLF and bLFH solution. Preparing bLFH solution with different hydrolyzing time (0, 10, 20, 30, 40, 50 min and 1, 2, 3, 4, 5, 6 h) to investigate their degree of hydrolysis (DH). Results indicted that the DH of bLFH solution would be increased while hydrolyzing time increasing. After 4 h (DH was 6.88%), the DH was not changed significantly. The SDS-PAGE of bLFH showed that increased in hydrolyzing time, 2.55 kD polypeptides within bLFH solution would be increased. bLFH solution hydrolyzed for 4 hours contained more polypeptides with low molecular weight. The minimal inhibitory concentrations (MICs) of bLF and bLFH solution hydrolyzed for 4 hours toward Staphylococcus aureus ATCC 9144 were 0.4 mg bLF/mL and 0.2 mg bLFH/mL, respectively. bLF showed no antibacterial activity to Pseudomonas aeruginosa ATCC 14207, but the MIC of bLFH solution to this strain is 1.6 mg bLFH/mL. The antibacterial activity of bLFH solution over 4 h-reaction would be increased slightly but there was no significant difference with bLFH solution hydrolyzed for 4 hours. The second part is to investigate the microbial and chemical properties of non-vacuum-package ground hams added 250 ppm EDTA and/or 4 mg bLFH/g meat and all of them named EDTA treatment, bLFH treatment and bLFH+EDTA treatment were stored at 4°C for 0, 2, 4 and 6 days. Results indicted that bLFH had pro-oxidative action. And perhaps owing to EDTA the TBARS value of bLFH+EDTA treatment was the lowest. The nonheme iron of bLFH treatment was more than control, but bLFH+EDTA treatment and control were not significantly different. The nonheme iron of EDTA treatment was the least. The total plate counts, lactic acid bacterial counts and coliforms in all treatments were lower than control which indicted that adding bLFH and/or EDTA could inhibit the growth of microbe. The third part is to investigate the microbial properties of non-vacuum-package Chinese meat balls added 250 ppm EDTA and/or 4 mg bLFH/g meat and all of them named EDTA treatment, bLFH treatment and bLFH+EDTA treatment were stored at 7°C for 0, 2, 4, 6 and 8 days. The results showed that bLFH did not have any antioxidative activity. And perhaps owing to EDTA the TBARS value of bLFH+EDTA treatment was the lowest The total plate counts and the lactic acid bacterial counts in all treatments were lower than control which indicted that adding bLFH and/or EDTA into cooked meat products could also inhibit the growth of microbe.
目錄
封面內頁 頁次
目錄……………………………………………………………… I
圖次……………………………………………………………… VI
表次……………………………………………………………… IX
中文摘要………………………………………………………… 1
英文摘要………………………………………………………… 3
壹、前言………………………………………………………… 5
貳、文獻回顧…………………………………………………… 7
一、乳鐵蛋白之簡介…………………………………………… 7
(一) 乳鐵蛋白之來源與分佈………………………………… 7
(二) 乳鐵蛋白之結構與特性………………………………… 9
(三) 乳鐵蛋白之生產與應用………………………………… 13
(四) 乳鐵蛋白之抗氧化性與抗菌性………………………… 14
1. 抗氧化性…………………………………………………… 14
2. 抗菌性……………………………………………………… 15
(五) 乳鐵蛋白之加工特性 (熱穩定性) …………………… 17
二、乳鐵蛋白水解物…………………………………………… 19
(一) 乳鐵蛋白之酸水解物…………………………………… 19
(二) 乳鐵蛋白之胃蛋白酶水解物…………………………… 20
(三) 乳鐵蛋白之凝乳酶水解物……………………………… 25
(四) 協同抗菌作用…………………………………………… 25
三、乳鐵蛋白素之簡介………………………………………… 27
(一) 乳鐵蛋白素之生產與應用……………………………… 27
(二) 乳鐵蛋白素的結構與特性……………………………… 28
(三) 乳鐵蛋白素的抗氧化性及抗菌性……………………… 31
1. 抗氧化性…………………………………………………… 31
2. 抗菌機制…………………………………………………… 32
(1) 胞外……………………………………………………… 32
(2) 胞內……………………………………………………… 34
3. 抗菌效果…………………………………………………… 34
(四) 協同抗菌作用…………………………………………… 36
四、乙烯二胺四醋酸之簡介…………………………………… 36
(一) EDTA於食品添加劑上的應用…………………………… 37
(二) 抗菌機制………………………………………………… 39
(三) EDTA的毒性……………………………………………… 40
五、研究目的…………………………………………………… 40
參、材料與方法………………………………………………… 42
第一部分 牛乳鐵蛋白水解液的製備與抗菌性之探討……… 42
一、實驗材料…………………………………………………… 42
(一) 牛乳鐵蛋白水解液之製備……………………………… 42
二、試驗設計…………………………………………………… 42
三、分析項目…………………………………………………… 44
(ㄧ) 水解度之測定…………………………………………… 44
(二) 牛乳鐵蛋白水解液中多胜肽濃度之定量……………… 46
(三) 聚丙烯醯胺凝膠電泳 (分子量的測定) ……………… 48
(四) 最小抑菌濃度之測定…………………………………… 54
四、統計分析…………………………………………………… 60
第二部分 牛乳鐵蛋白水解物及EDTA對豬後腿絞肉抗氧化性及抗菌性之探討………………………………………………………………… 61
一、預備實驗…………………………………………………… 61
二、實驗材料…………………………………………………… 66
(一) 原料肉…………………………………………………… 66
(二) 食品添加物……………………………………………… 66
(三) 包裝材料………………………………………………… 66
三、試驗設計…………………………………………………… 66
四、原料處理…………………………………………………… 66
(一) 牛乳鐵蛋白水解物之製備……………………………… 66
(二) 豬後腿絞肉之製備……………………………………… 68
五、分析項目…………………………………………………… 70
(一) 水分含量測定…………………………………………… 70
(二) 粗脂肪測定……………………………………………… 70
(三) 非血基質鐵……………………………………………… 71
(四) 硫巴比妥酸值測定……………………………………… 75
(五) 酸鹼值測定……………………………………………… 77
(六) 微生物測定……………………………………………… 77
1. 總生菌數…………………………………………………… 77
2. 乳酸菌數…………………………………………………… 78
3. 大腸桿菌群………………………………………………… 78
六、統計分析…………………………………………………… 78
第三部分 牛乳鐵蛋白水解物對貢丸抗氧化性及抗菌性之探討 79
一、實驗材料…………………………………………………… 79
(一) 原料肉…………………………………………………… 79
(二) 食品添加物……………………………………………… 79
(三) 包裝材料………………………………………………… 79
二、試驗設計…………………………………………………… 79
三、貢丸之製備………………………………………………… 81
四、分析項目…………………………………………………… 83
(一) 硫巴比妥酸值測定……………………………………… 83
(二) 微生物測定……………………………………………… 84
1. 總生菌數…………………………………………………… 84
2. 乳酸菌數…………………………………………………… 85
五、統計分析…………………………………………………… 85
肆、結果與討論………………………………………………… 86
第一部分 牛乳鐵蛋白水解液的製備與抗菌性之探討……… 86
一、牛乳鐵蛋白的水解情形…………………………………… 86
二、牛乳鐵蛋白水解液之蛋白質電泳分析…………………… 88
三、牛乳鐵蛋白及其水解液的抗菌表現……………………… 93
(一) 金黃葡萄球菌…………………………………………… 93
(二) 綠膿桿菌………………………………………………… 98
第二部分 牛乳鐵蛋白水解物及EDTA對豬後腿絞肉抗氧化性及抗菌性之探討………………………………………………………………… 105
一、水分含量與粗脂肪分析…………………………………… 105
二、非血基質鐵………………………………………………… 105
三、硫巴比妥酸值測定………………………………………… 110
四、酸鹼值……………………………………………………… 114
五、添加牛乳鐵蛋白水解物及EDTA對豬後腿絞肉於貯藏期間 (4°C) 微生物的影響………………………………………………………………… 116
(一) 總生菌數………………………………………………… 116
(二) 乳酸菌數………………………………………………… 122
(三) 大腸桿菌群……………………………………………… 126
第三部分 牛乳鐵蛋白水解物及EDTA對貢丸抗氧化性及抗菌性之探討………………………………………………………………… 132
一、硫巴比妥酸值測定………………………………………… 132
二、添加牛乳鐵蛋白水解物及EDTA對貢丸於貯藏期間 (7°C) 微生物的影響………………………………………………………………… 135
(一) 總生菌數………………………………………………… 135
(二) 乳酸菌數………………………………………………… 140
伍、結論………………………………………………………… 142
陸、參考文獻…………………………………………………… 144
柒、附錄………………………………………………………… 165

圖次 頁次
圖一、 (A) 牛及 (B) 人乳鐵蛋白之3-D結構。……… 10
圖二、 牛乳鐵蛋白N-球葉之三價鐵結合位置。………… 12
圖三、 加熱對牛乳鐵蛋白變性之影響。………………… 18
圖四、 牛乳鐵蛋白之胃蛋白酶水解物中所含抗菌胜肽之主要序列。……………………………………………………………… 24
圖五、 牛乳鐵蛋白素在溶液中的結構。………………… 29
圖六、 EDTA的分子結構。………………………………… 38
圖七、 [Ca(EDTA)]2-的結構。………………………… 38
圖八、 牛乳鐵蛋白水解液的製備流程圖。……………… 43
圖九、 牛血清蛋白之標準檢量曲線。…………………… 48
圖十、 (A) 綠膿桿菌的生長曲線,以及 (B) 對數生長期之菌數對數值與吸光值之回歸曲線圖。……………………………………………………… 57
圖十一、 (A) 金黃葡萄球菌的生長曲線,以及 (B) 對數生長期之菌數對數值與吸光值之回歸曲線圖。………………………………………………… 58
圖十二、 添加不同濃度之牛乳鐵蛋白水解物及EDTA對豬後腿絞肉於貯藏期間 (4°C) 總生菌數的影響。………………………………………………… 63
圖十三、 添加不同濃度之牛乳鐵蛋白水解物及EDTA對豬後腿絞肉總生菌數 (各貯藏時間之平均值) 的影響。………………………………………… 65
圖十四、 豬後腿絞肉添加處理之試驗流程圖。………… 67
圖十五、 冷凍乾燥之牛乳鐵蛋白水解物。………………… 69
圖十六、 非血基質鐵之標準檢量曲線。…………………… 74
圖十七、 貢丸處理之試驗流程圖。………………………… 80
圖十八、 使用o-Phthaldialdehyde (OPA) 分光光度法測定牛乳鐵蛋白的水解程度。…………………………………………………………… 87
圖十九、 水解0小時之牛乳鐵蛋白溶液電泳分析之影響。… 89
圖二十、 水解時間 (10分鐘、4小時、5小時與6小時) 對牛乳鐵蛋白水解液電泳分析之影響。…………………………………………………………… 91
圖二十一、水解時間 (10分鐘、4小時、5小時與6小時) 對牛乳鐵蛋白水解液中2.55 kD多胜肽之影響。……………………………………………… 92
圖二十二、牛乳鐵蛋白對金黃葡萄球菌的生長抑制率。… 94
圖二十三、水解4小時之牛乳鐵蛋白水解液對金黃葡萄球菌的生長抑制率。…………………………………………………………… 95
圖二十四、不同水解時間之牛乳鐵蛋白水解液 (0.2 mg bLFH/mL medium) 對金黃葡萄球菌的生長抑制率。………………………………………… 99
圖二十五、牛乳鐵蛋白對綠膿桿菌的生長抑制率。……… 100
圖二十六、水解4小時之牛乳鐵蛋白水解液對綠膿桿菌的生長抑制率。…………………………………………………………… 102
圖二十七、不同水解時間之牛乳鐵蛋白水解液 (1.6 mg bLFH/mL medium) 對綠膿桿菌的生長抑制率。……………………………………………… 104
圖二十八、添加牛乳鐵蛋白水解物及EDTA對豬後腿絞肉於貯藏期間 (4°C) 非血基質鐵的影響。………………………………………………………… 107
圖二十九、添加牛乳鐵蛋白水解物及EDTA對豬後腿絞肉非血基質鐵 (各貯藏時間之平均值) 的影響。………………………………………………… 109
圖三十、 添加牛乳鐵蛋白水解物及EDTA對豬後腿絞肉於貯藏期間 (4°C) TBARS值的影響。…………………………………………………………… 111
圖三十一、添加牛乳鐵蛋白水解物及EDTA對豬後腿絞肉TBARS值 (各貯藏時間之平均值) 的影響。……………………………………………………… 113
圖三十二、添加牛乳鐵蛋白水解物及EDTA對豬後腿絞肉於貯藏期間 (4°C) 酸鹼值的影響。…………………………………………………………… 115
圖三十三、添加牛乳鐵蛋白水解物及EDTA對豬後腿絞肉於貯藏期 (4°C) 總生菌數的影響。…………………………………………………………… 117
圖三十四、添加牛乳鐵蛋白水解物及EDTA對豬後腿絞肉總生菌數 (各貯藏時間之平均值) 的影響。……………………………………………………… 120
圖三十五、添加牛乳鐵蛋白水解物及EDTA對豬後腿絞肉於貯藏期間 (4°C) 乳酸菌數的影響。…………………………………………………………… 123
圖三十六、添加牛乳鐵蛋白水解物及EDTA對豬後腿絞肉乳酸菌數 (各貯藏時間之平均值) 的影響。……………………………………………………… 125
圖三十七、添加牛乳鐵蛋白水解物及EDTA對豬後腿絞肉於貯藏期間 (4°C) 大腸桿菌群數的影響。……………………………………………………… 127
圖三十八、添加牛乳鐵蛋白水解物及EDTA對豬後腿絞肉大腸桿菌群數 (各貯藏時間之平均值) 的影響。………………………………………………… 130
圖三十九、添加牛乳鐵蛋白水解物 (bLFH) 及EDTA對貢丸於貯藏期間 (7°C) TBARS值的影響。………………………………………………………… 133
圖四十、 添加牛乳鐵蛋白水解物及EDTA對貢丸於貯藏期 (7°C) 總生菌數的影響。…………………………………………………………… 136
圖四十一、添加牛乳鐵蛋白水解物及EDTA對貢丸總生菌數 (各貯藏時間之平均值) 的影響。…………………………………………………………… 139
圖四十二、添加牛乳鐵蛋白水解物及EDTA對貢丸於貯藏期 (7°C) 乳酸菌數的影響。…………………………………………………………… 141


表次 頁次
表一、乳鐵蛋白在人體內的含量……………………………… 8
表二、牛乳鐵蛋白及其胃蛋白酶水解物的抗菌表現………… 21
表三、不同pH值之乳鐵蛋白水解物經高溫高壓加熱處理後對Escherichia coli O111的抗菌表現………………………………………………………… 22
表四、牛乳鐵蛋白素及其相似胜肽片段對Escherichia coli的抗菌表現………………………………………………………………… 30
表五、電泳程序所使用之溶液………………………………… 50
表六、鑄膠配方………………………………………………… 51
表七、貢丸之配方……………………………………………… 82
表八、牛乳鐵蛋白及水解4小時之牛乳鐵蛋白水解液對金黃葡萄球菌與綠膿桿菌之最小抑菌濃度……………………………………………………………… 97
表九、添加牛乳鐵蛋白水解物及EDTA對於豬後腿絞肉水分及粗脂肪的影響………………………………………………………………… 106
1.中國國家標準,CNS 108960 (N 6186)。1991。食品微生物之檢驗法。經濟部中央標準局印行,台北。
2.王聖予等編譯。1998。最新醫用微生物學 (第一版)。藝軒出版社。台北。
3.丘志威、吳定峰編譯。2003。食品微生物學精要 (第一版)。藝軒出版社。台北。
4.李桂雲。1996。肉品品質改善之研究:I、不同洗滌溶液對機械去骨雞肉回收率及其性質之影響 II、貢丸回溫味之研究。碩士論文。東海大學食品科學系。
5.柴宏琪。1997。乳酸鏈球菌素、螯合劑、有機酸、褐藻膠及其混合系統對絞牛肉中大腸桿菌血清型O157-H7生長之影響。碩士論文。國立中興大學食品科學系。
6.曹李宏。1999。牛乳鐵蛋白對大腸桿菌與幽門螺旋菌抗菌作用之探討。碩士論文。國立中興大學獸醫微生物學研究所。
7.陳學文,顏思明。1976。食品微生物學。正欣出版社。台北。
8.謝哲松翻譯。1995。微生物生物學 (初版)。國立編譯館。台北。
9.鍾淑女。2001。EDTA鰲何物分解菌之生物分解特性研究。碩士論文。國立中興大學環境工程學系。
10.顧洋。1995。紫外線/臭氧程序在廢水處理上的應用。工業污染防治第56期,第248-261頁。
11.Abdallah, F. B. and El-Hage Chahine, J. M. (2000) Transferrins: iron release from lactoferrin. J. Mol. Biol. 303: 255-266.
12.Abe, H., Saito, H., Miyakawa, H., Tamura, Y., Shimamura, S., Nagao, E. and Tomita, M. (1991) Heat stability of bovine lactoferrin at acidic pH. J. Dairy Sci. 74: 65-71.
13.Aguilera, O., Ostolaza, H., Quiros, L. M. and Fierro, J. F. (1999) Permeabilizing action of an antimicrobial lactoferricin-derived peptide on bacterial and artificial membranes. FEBS Lett. 462: 273-277.
14.Ahn, J. and Johnstone, R. M. (1993) Origin of a soluble truncated transferring receptor. Blood. 81: 2442-2451.
15.Ainscough, E. W., Brodie, A. M. and Plowman, J. E. (1979) The chromium, manganese, cobalt and copper complexes of human lactoferrin. Inorg. Chim. Acta. 33: 149-153.
16.Ambruso, D. R. and Johnston, R. B. (1981) Lactoferrin enhances hydroxyl. radical production by human neutrophils, neutrophil particulate fraction and an enzymatic generating system. J. Clin. Invest. 67: 352-360.
17.Anderson, B. F., Baker, H. M., Norris, G. E., Rice, D. W. and Baker, E. N. (1989) Structure of human lactoferrin: crystallographic structure analysis and refinement at 2.8 Å resolution. J. Mol. Biol. 209: 711-734.
18.Ang, C. Y. W. and Huang, Y. W. (1993) Interna temperature and packaging system affect stability of cooked chicken leg patties during refrigerated storage. J. Food Sci. 58 (2): 265-269.
19.A.O.A.C. (1984) Official Method of Analysis, 14th ed., Association of Official Analytical Chemists, Washington. 152-159.
20.A.O.A.C. (1991) Official Method of Analysis, 16th ed., Virginia, USA: Association of Official Analytical Chemists International.
21.Arnold, R. R., Brewer, M. and Gautier, J. J. (1980) Bactericidal activity of human lactoferrin: Sensitivity of a variety of microorganism. Infect. Immun. 28: 893-898.
22.Ayres, J. C. (1960) The relationship of organisms of the genus Pseudomonas to the spoilage of meat, poultry and eggs. J. Appl. Bacteriol. 23: 471-486.
23.Baker, E. N., Anderson, B. F., Baker, H. M., Day, C. L., Haridas, M., Norris, G. E., Rumball, S. V., smith, C. A. and Thomas, D. M. (1994) Three-dimensional structure of lactoferrin various functional states. In lactoferrin: Structure and Function, Advances in Experimental Medicine and Biology. Hutchens T. W., S. V. Rumball and Lonnerdal, B. eds. New York: Plenum Press. p.1-12.
24.Baldwin, D. A., Jenny, E. R. and Aisen, P. (1984) The effect of human serum transferring and milk lactoferrin on hydroxyl radical formation from superoxide and hydrogen peroxide. J. Biol.Chem. 259: 13391-13394.
25.Balmer, S. E., Scott, P. H. and Whaton, B. A. (1989) Diet and fecal flora in the new-born: lactoferrin. Arch. Dis. Child. 64: 1685-1690.
26.Bawn, C. E. H. (1953) Free-radical reactions in solution initiated by heavy metal ions. Disc. Farad. Soc. 14: 181-199.
27.Bechinger, B., Zasloff, M. and Opella, S. J. (1993) Structure and orientation of the antibiotic peptide magainin in membranes by solid state NMR spectroscopy. Protein Sci. 2: 2077-2084.
28.Bellamy, W., Takase, M., Wakabayashi, H., Kawase, K. and Tomita. M. (1992) Antibacterial spectrum of lactoferricin B, a potent bactericidal peptide derived from the N-terminal region of bovine lactoferrin. J. Appl. Bacteriol. 73: 472.
29.Bellamy, W., Takase, M., Yamauchi, K., Wakabayashi, H., Kawase, K. and Tomita., M. (1992) Identification of the bactericidal domain of lactoferrin. Biochim. Biophys. Acta. 1121: 130.
30.Bellamy, W., Wakabayashi, H., Takase, M., Kawase, K., Shimamura, S. and Tomita. M. (1993) Role of cell-binding in the antibacterial mechanism of lactoferricin B. J. Appl. Bacteriol. 75: 478.
31.Bellamy, W., Wakabayashi, H., Takase, M., Kawase, K., Shimamura, S. and Tomita, M. (1993) Killing of Candida albicans by lactoferricin B, a potent antimicrobial peptide derived from the N-terminal region of bovine lactoferrin. Med. Microbiol. Immunol. (Berl). 182 (2): 97-105.
32.Blickstad, E. and Molin, G. (1983) Carbon dioxide as a controller of the spoilage flora of pork, with special reference to temperature and sodium chloride. J. Food Protect. 46: 756-763.
33.Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biocbem. 72: 248-254.
34.Brotner, C. A., Miller, R. D. and Arnold, R. R. (1986) Bactericidal effect of lactoferrin on Legionella pneumophila. Infect. Immun. 51: 373-377.
35.Brotner, C. A., Arnold, R. R. and Miller, R. D. (1989) Bactericidal effect of lactoferrin on Legionella pneumophila: effect of the physiological state of the organism. Can. J. Microbiol. 35: 1048-1051.
36.Broxmeyer, H. E., DeSousa, M., Smithyman, A., Ralph, P., Hamilton, J., Kurland, J. I. and Bognacki, J. (1980) Specificity and modulation of the action of lactoferrin, a negative feedback regulator of myelopoiesis. Blood. 55 (2): 324-333.
37.Bruyneel, B., Vande Woestyne, M. and Verstraete, W. (1989) Lactic acid bacteria: micro-organisms able to grow in the absence of available iron and copper. Biotechnol. Lett. 11: 401-406.
38.Bullen, J. J., Rogers, H. J. and Leigh, L. (1972) Iron-binding proteins in milk and resistance to Escherichia coli infection in infants. Br. Med. J. 1 (5792): 69-75.
39.Chantaysakorn, P. and Richter, R. L. (2000) Antimicrobial properties of pepsin-digested lactoferrin added to carrot juice and filtrates of carrot juice. J. Food Prot. 63 (3): 376-380.
40.Chapple, D. S., Mason, D. J., Joannou, C. L., Odell, E. W., Gant, V. and Evans, R. W. (1998) Structure-function relationship of antibacterial synthetic peptides homologous to a helical surface region on human lactoferrin against Escherichia coli serotype O111. Infect. Immun. 66: 2434-2440.
41.Chung, K. T., Lu, Z. and Chou, M. W. (1998) Mechanisms of inhibition of tannic acid and related compounds on the growth of intestinal bacteria. Food Chem. Toxicol. 36: 1053-1060.
42.Church, F. C., Swaisgood, H. E., Porter, D. H. and Catignani, G. L. (1983) Spectrophotometric assay using o-Phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins. J. Dairy Sci. 66: 1219-1227.
43.Coates, K. J., Beattie, J. C., Morgan, I. R. and Widders, P. R. (1995) The contribution of carcass. contamination and the boning process to microbial spoilage of aerobically stored pork. Food Microbiol. 12: 49-54.
44.Cochran, M., Coates, J. and Neoh, S. (1984) The competitive equilibrium between aluminium ferric ions for the binding sites of transferring. FEBS Lett. 176: 129-132.
45.Coddeville, B., Strecker, G., Wieruszeski, J-M., Vliegenthart, J. F. G., van Halbeek, H., Peter-Katalinic, J., Egge, H. and Spik, G. (1992) Heterogeneity of bovine lactotransferrin glycans. Characterization of α-D-Gal p-(1→3)-β-D-Gal- and α-NeuAc-(2→6)-β-D-GalpNAc-(1 →4)-β-D-GlcNAc-substituted N-linked glycans. Carbohydrate Research 236: 145-164.
46.Cohen, G. and Sinet, P. M. (1980) In chemical and biochemical aspects of superoxide and superoxide dismutase developments in biochemistry. Bannister, J. V. and Hill, H. A. O., Eds., Elsevier-North Holland: New York, 11A: 27.
47.Compton, S. J. and Jones, C. G. (1986) Mechanism of dye response and interferences in the Bradford protein assay. Bio-Radiations 61: 5.
48.Cronan, J. E., Jr., Gennis, R. B. and Maloy, S. R. (1987) Cytoplasmic membrane, p. 31-55. In Neidhardt, F. C., Ingraham, J. L., Low, K. B., Magasanik, B., Schaechter, M. and Umbarger, H. E. (ed.) Escherichia coli and Salmonella: cellular and molecular biology. American Society for Microbiology, Washington, D.C.
49.Dainty, R. H. and Mackey, B. M. (1992) The relationship between the phenotypic properties of bacteria from chill-stored meat and spoilage processes. J. Appl. Bacteriol. 73 (Symp. Suppl. 21): 103S-114S.
50.Davies, A. and Board, R. (1998) The microbiology of meat and poultry. Blackie Academic & Professional, Inc. NY. USA.
51.Dionysius, D. A. and Milne, J. M. (1997) Antibacterial peptides of bovine lactoferrin: purification and characterization. J. Dairy Sci. 80 (4): 667-674.
52.Drosinos, E. H. and Board, R. G. (1995) Microbial and physicochemical attributes of minced lamb: sources of contamination with pseudomonas. Food Microbiol. 12: 189-197.
53.Duckworth, D. H., Bevers, E. M., Verkleij, A. J., Op den Kamp, J. A. and van Deenen, L. L. (1974) Action of phospholipase A2 and phospholipase C on Escherichia coli. Arch. Biochem. Biophys. 165 (1): 379-387.
54.Elass-Rochard, E., Roseanu, A., Legrand, D., Trif, M., Salmon, V., Motas, C., Montreuil, J. and Splik, G. (1995) Lactoferrin-lipopolysaccharide interaction: involvement of the 28-34 loop region of human lactoferrin in the high-affinity binding to Escherichia coli 055B5 lipopolysaccharide. J. Biochem. 312: 839-845.
55.Ellison III, R. T. and Giehl, T. J. (1991) Killing of Gram negative bacteria by lactoferrin and lysozyme. J. Clin. Invest. 88: 1080-1091.
56.Ellison III, R. T., Giehl, T. J. and LaForce, F. M. (1988) Damage of the outer membrane of enteric Gram-negative bacteria by lactoferrin and transferring. Infect. Immun. 56: 2774-2781.
57.Ellison III, R. T., LaForce, F. M., Giehl, T. J., Boose,D. S. and Dumm, B. E. (1990) Lactoferrin and transferring damage of the Gram-negative outer membrane is modulated by Ca2+ and Mg2+. J. Gen. MIcrobiol. 136: 1437-1446.
58.Erdman, A. M. and Watts, B. M. (1957) Spectrophotometric determination of color change in cured meat. J. Agric. Food Chem. 5: 453-455.
59.Facon, M. J. and Skura, B. J. (1996) Antibacterial activity of lactoferricin, lysozyme and EDTA against Salmonella enteritidis. Int. Dairy J. 6: 303-313.
60.Fasano, M., Fanali, G., Politicelli, F., Ascenzi, P. and Antonini, G. (2004) 1H NMR relaxometric characterization of bovine lactoferrin. J. of Inorg. Biochem. 98: 1421-1426.
61.Feng, M., Der Does, L. V. and Bantjes, A. (1995) Preparation of apolactoferrrin with a very low iron saturation. J. Dairy Sci. 78:2352-2357.
62.Fransson, G.-B., Keen, C. L. and Lonnerdal, B. (1983) Supplementation of milk with iron bound to lactoferrin using weanling mice. I: Effects on hematology and tissue iron. J. pediatr. gastroenterol. nutr. 2: 693-700.
63.Gesell, J., Zasloff, M. and Opella, S. J. (1997) Two-dimensional 1H NMR experiments show that the 23-residue magainin antibiotic peptide is an α-helix in dodecylphosphocholine micelles, sodium dodecyl sulfate micelles, and trifluoroethanol/water solution. J. Biomol. NMR 9: 127-135.
64.Gill, C. O. and K. G. Newton (1978) The ecology of bacterial spoilage of fresh meat at chill temperatures. Meat Sci. 2:207-217.
65.Grau, F. H. (1981) Role of pH, lactate, and anaerobiosis in controlling the growth of some fermentative Gram-negative bacteria on beef. Appl. Environ. Microbiol. 42: 1043-1050.
66.Groisman, E. A. and Aspedon, A. (1997) The genetic basis of microbial resistance to antimicrobial peptides. Methods Mol. Biol. 78: 205-215.
67.Groves, M. L. (1960) Ths isolation of a red protein from milk. J. Am. Chem. Soc. 82: 3345-3350.
68.Gutteridge, J. M. C., Paterson, S. K., Segal, A. W. and Halliwell, B. (1981) Inhibition of lipid peroxidation by the iron-binding protein lactoferrin. Biochem. J. 199: 259-261.
69.Hall, H. E., Brown, D. F. and Lewis, K. H. (1967) Examination of market foods for coliform organisms. Appl. Microbiol. 15 (5): 1062-1069.
70.Halliwell, B. and Gutteridge, J. M. (1986) Oxygen free radicals and iron in relation to biology and medicine: some problems and concepts. Arch. Biochem. Biophys. 246 (2): 501-514.
71.Halliwell, B. and Gutteridge, J. M. (1990) Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol. 186: 1-85.
72.Hancock, R. E. and Chapple, D. S. (1999) Peptide antibiotics. Antimicrob. Agents Chemother. 43 (6): 1317-1323.
73.Haridas, M., Anderson, B. F. and Baker, E. N. (1995) Structure of human diferric lactoferrin refined at 2.2 Å resolution. Acta Cryst. D51: 629-646.
74.Hashizume, S., Kuroda, K. and Murakami, H. (1983) Identification of lactoferrin as an essential growth factor for human lymphocytic cell lines in serum-free medium. Biochim. Biophys. Acta. 763: 377-382.
75.Hathcox, A. K. and Beuchat, L. T. (1996) Inhibitory effects of sucrose fatty acids ester, organic acid, on viability of Escherichia coli O157: H7. Food Microbiol. 3 (2): 213-225.
76.Haukland, H. H., Ulvatne, H., Sandvik, K. and Vorland, L. H. (2001) The antimicrobial peptides lactoferricin B and magainin 2 cross over the bacterial cytoplasmic membrane and reside in the cytoplasm. FEBS Lett. 508: 389-393.
77.Heimbach, J., Rieth, S., Mohamedshah, F., Slesinski, R., Samuel-Fernando, P., Sheehan, T., Dickmann, R. and Borzelleca, J. (2000) Safety assessment of iron EDTA [sodium iron (Fe(3+)) ethylenediaminetetraacetic acid]: summary of toxicological, fortification and exposure data. Food Chem. Toxicol. 38 (1): 99-111. Review.
78.Helander, I. M., Alakomi, H. L., Latva-Kala, K. and Koski, P. (1997) Polyethyleneimine is an effective permeabilizer of gram-negative bacteria. Microbiology. 143 ( Pt 10): 3193-3199.
79.Hennart, P. F., Brasseur, D. J., Delogne-Desnoeck, J. B., Dramaix, M. M. and Robyn, C. E. (1991) Lysozyme. Lactoferrin, and secretory immunoglobiun Acontent in breast milk: influence of duration of lactation, nutrition status, prolctin status, and patity of mother. Am. J. Clin. Nutr. 53: 32-39.
80.Hermes-Lima, M., Santos, N. C., Yan, J., Andrews, M., Schulman, H. M. and Ponka, P. (1999) EPR spin trapping and 2-deoxyribose degradation studies of the effect of pyridoxal isonicotinoyl hydrazone (PIH) on *OH formation by the Fenton reaction. Biochim. Biophys. Acta. 1426 (3): 475-482.
81.Hoek, K. S., Milne, J. M., Grieve, P. A., Dionysius, D. A. and Smith, R. (1997) Antibacterial activity of bovine lactoferrin-derived peptides. Antimicrobial Agents and Chemotherapy. 41 (1): 54-59.
82.Huang, S. W., Satue-Gracia, M. T., Frankel, E. N. and German, J. B. (1999) Effect of lactoferrin on oxidative stability of corn oil emulsions and liposomes. J. Agric. Food Chem. 47: 1356-1361.
83.Hughey, V. L. and Johnson, E. A. (1987) Antimicrobial activity of lysozyme against bacteria involved in food spoilage and food-borne disease. Appl. Environ. Microbiol. 53 (9): 2165-2170.
84.Hwang, P. M., Zhou, N., Shan, X., Arrowsmith, C. H. and Vogel, H. J. (1998) Three-dimensional solution structure of lactoferricin B, an antimicrobial peptide derived from bovine lactoferrin. Biochem. 37 (12): 4288-4298.
85.Igene, J. O., Jennifer, A. K., Pearson, A. M. and Gray, J. I. (1979) Influence of heme pigments, nitrite, and non-heme iron on development of warmed-over flavor (WOF) in cooked meat. J. Agric. Food Chem. 27 (4): 838.
86.Igene, J. O. and Pearson, A. M. (1979) Role of phospholipids and triglycerides in warmed-over flavor development in meat model system. J. Food Sci. 44: 1287.
87.Isamida, T., Tanaka, T., Omata, Y., Yamauchi, K., Shimazaki, K. and Saito, A. (1998) Protective effect of lactoferricin against Toxoplasma gondii infection in mice. J. Vet. Med. Sci. 60: 241-244.
88.Juretic, D., Chen, H. C., Brown, J. H., Morell, J. L., Hendler, R. W. and Westerhoff, H. V. (1989) Magainin 2 amid and analogues antimicrobial activity, membrane depolarization and susceptibility to proteolysis. FEBS Lett. 249: 219-223.
89.Johansson, B. G. (1969) Isolation of crystalline lactoferrin from human milk. Acta Chem Scand. 23 (2): 683-684.
90.Jones, E. M., Smart, A., Bloomberg, G., Burgess, L. and Millar, M. R. (1994) Lactoferricin, a new antimicrobial peptide. J. Appl. Bacteriol. 77 (2): 208-214.
91.Kang, J. H., Lee, M. K., Kim, K. L. and Hahm, K. (1996) Structure-biological activity relationships of 11-residue highly basic peptide segment of bovine lactoferrin. Int. J. Pept. Protein Res. 48: 357-363.
92.Kanner, J., Hazan, B. and Doll, L. (1988) Catalytic “free” iron ions in muscle foods. J. Agric. Food Chem. 36: 412-415.
93.Kanner, J., Harel, S. and Grait, R. (1992) 38th Inter. Congr. Meat Sci. Technol. Clermont-Ferrand, France. pp. 111.
94.Kawaguchi, S., Hayashi, T., Masano, H., Okuyama, K., Suzuki, T. and Kawase, K. (1989) Effect of lactoferrin-enriched infant formula on low birth weight infants. Shuusankiigaku 19: 125-130. (In Japanese)
95.Klebanoff, S. J. and Waltersdorph, A. M. (1990) Prooxidant activity of transferring and lactoferrin. J. Exp. Med. 172: 1293-1303.
96.Kodama, A. (1983) The biotyping of Bifidobacterium isolated from healthy infants in Wakayama and Osaka district: Bifidobacterium growth promoting activities of human milk casein and lactoferrin. Acta. Pediatr. Jpn. 25: 486-491.
97.Kussendrager, K. (1994) Effects of heat treatment on structure and iron-binding capacity of bovine lactoferrin. In IDF Bulletin: Indigenous Antimicrobial Agents of Milk: Recent Developments (Uppsala 1993, S.I.9404), pp. 133-146.
98.Lacroix, M. L., Smoragiewicz, W., Jobin, M., Latreille, B. and Krzystyniak, K. (2002) The effect of irradiation of fresh pork loins on the protein quality and microbiological changes in aerobically or vacuum-packaged. Rad. Phys. Chem. 63: 317-322.
99.Leive, L. (1965) Actinomycin sensitivity in Escherichia coli produced by EDTA. Biochem. Biophys. Res. Commun. 18: 13-17.
100.Leive, L. (1968) Studies on the permeability change produced in coliform bacteria by ethylenediaminetetraacetate. J. Biol. Chem. 243 (9): 2373-2380.
101.Levay, P. F. and Viljoen, M. (1995) Lactoferrin: a general review. Haematologica 80: 252-267.
102.Luf, W. and Rosner, E. (1997) Zur Thermostabilität von Lactoferrin in Kuhmilch. Wiener Tieraertzliche Monatsschrift 84: 70-73.
103.Masci, J. R. (2000) Complete response of severe, refractory oral candidiasis to mouthwash containing lactoferrin and lysozyme. AIDS. 14: 2403-2404.
104.Masson, P. L. and Heremans, J. F. (1971) Lactoferrin in milk from different species. Comp. Biochem. Physiol. 39B: 119-129.
105.Masson, P. L., Heremans, J. F. and Dive, C. (1966) An iron-binding protein common to many external secretions. Clin. Chem. Acta. 13: 735-739.
106.Matsue, M., Matsuyama, J. and Kiyosawa, I. (1995) Interaction of lactoferrin with ascorbate and the relationship with bleomycindependent DNA damage. Biosci. Biotechnol. Biochem. 59: 358-362.
107.Matsuzaki, K., Murase, O. and Miyajima, K. (1995) Kinetics of pore formation by an antimicrobial peptide, magainin 2, in phospholipid bilayers. Biochem. 34: 12553-12559.
108.Martin, E., Ganz, T. and Lehrer, R. I. (1995) Defensins and other endogenous peptide antibiotics of vertebrates. J. Leukoc. Biol. 58: 128-136.
109.Miller, E. K., Gomez-Basauri, J. V., Smith, V. L. and Miller, D. D. (1994) Dietary iron in swine rations affects nonheme iron and TBARS in pork skelectal muscles. J. Food Sci. 59 (4): 747-750.
110.Molin, G. and Ternström, A. (1982) Numerical taxonomy of psychrotrophic pseudomonas. J. Gen. Microbiol. 128: 1249-1264.
111.Molin, G. and Ternström, A. (1986) Phenotypically based taxonomy of psychrotrophic Pseudomonas isolated from spoiled meat, water, and soil. Int. J. System. Bacteriol. 36: 257-274.
112.Moore, S. A., Anderson, B. F., Groom, C. R., Haridas, M. and Baker, E. N. (1997) Three-dimensional structure of diferric bovine lactoferrin at 2.8 Å resolution. Journal of Molecular Biology 274: 222-236.
113.Moriarty, L. C. (2002) Ph. D. thesis, University of London.
114.Murdock, C. A. and Matthews K. R. (2002) Antibacterial activity of pepsin-digested lactoferrin on foodborne pathogens in buffered broth systems and ultra-high temperature milk with EDTA. J. Appl. Microbiol. 93: 850-856.
115.Naidu, A. S. (2002) Activated lactoferrin-a new approach to meat safety. Food Technology. 56(3): 40-45.
116.Nakasone, Y., Adjei, A., Yoshise, M., Yamauchi, K., Takase, M., Yamauchi, K., Shimamura, S. and Yamamoto, S. (1994) Effect of dietary lactoferricin on the recovery of mice infected with methicillin-resistant Staphylococcus aureus. Abstr. Annu. Meet. Jpn. Soc. Nutr. Food Sci. p. 50. (In Japanese)
117.Nikaido, H. and Vaara, M. (1985) Molecular basis of bacterial outer membrane permeability. Microbiol. Rev. 49: 1-32.
118.Nonnecke, B. J. and Smith, K. L. (1984) Inhibition of mastitic bacteria by bovine milk apo-lactoferrin evaluated by in vitro microassay of bacterial growth. J. Dairy Sci. 67: 606-613.
119.Ockeman, H. W. (1985) Qulity control of post-mortem muscle tissue. Dept. of Animal Science. The Ohio State University.
120.Otto, B. R., Verweij-van Vught, A. M. and MacLaren, D. M. (1992) Transferrins and heme-compounds as iron sources for pathogenic bacteria. Crit. Rev. Microbiol. 18 (3): 217-233.
121.Oviedo, C. and Rodríguez, J. (2003) EDTA: The chelating agent under environmental scrutiny. Quim. Nova. 26 (6): 901-905.
122.Pakdaman, R., Petitjean, M. and Chahine, J.-M. El. H. (1998) Transferrins-a mechanism for iron uptake by lactoferrin. Eur J. Biochem. 254(1): 144-153.
123.Pandey, A., Bringel, F. and Meyer, J. M. (1994) Iron requirement and search for siderophores in lactic acid bacteria. Appl. Microbiol. Biotechnol. 40: 735-739.
124.Paulsson, M. A., Svensson, U., Kishore, A. R. and Naidu, A. S. (1993) Thermal behaviour of bovine lactoferrin in water and its relation to bacterial interaction and antibacterial activity. J. Dairy Sci. 76: 3711-3720.
125.Payne, K. D., Davidson, P. M., Oliver, S. P. and Christen, G. L. (1990) Influnce of bovine lactoferrin on the growth of Lsteria monocytogenes. J. Food Prot.53: 468-472.
126.Payne, K. D., Oliver, S. P. and Davidson, P. M. (1994) Comparison of EDTA and apo-lactoferrin with lysozyme on the growth of foodborne pathogenic and spoilage bacteria. J. Food Prot. 57: 62-65.
127.Pierce, A., Colavizza, D., Benaissa, M., Maes, P., Tartra, A., Montreuil, J. and Spik, G. (1991) Molecular cloning and sequence analysis of bovine lactoferrin. European Journal of Biochemistry 196: 177-184.
128.Prieto, M., García-Armesto, M. R., García-López, M. L., et al. (1992a) Species of Pseudomonas obtained at 7°C and 30°C during aerobic storage of lamb carcasses. J. Appl. Bacteriol. 73:317-323.
129.Prieto, M., García-Armesto, M. R., García-López, M. L., et al. (1992b) Numerical taxonomy of Gram-negative, nonmotile, nonfermentative bacteria isolated during chilled storage of lamb carcasses. Appl. Environ. Microbiol. 58: 2245-2249.
130.Razavi-Rohani, S. M. and Griffiths, S. M. (1994) The effect of mono and polyglycerol laurate on spoilage and pathogenic bacteria associated with foods. J. Food Safety 14: 131-151.
131.Reisner, A. H., Nemes, P. and Bucholtz, C. (1975) The use of Coomassie Brilliant Blue G250 perchloric acid solution for staining in electrophoresis and isoelectric focusing on polyacrylamide gels. Anal. Biochem. 64 (2): 509-516.
132.Reiter, B. (1978) Review of the progress of dairy science: antimicrobial systems in milk. J. Dairy Res. 45: 131-147.
133.Reiter, B. (1983) The biological significance of lactoferrin. Int J Tissue React. 5 (1): 87-96.
134.Rekdal, O., Andersen, J., Vorland, L. H. and Svendsen, J. S. (1999) Construction and synthesis of lactoferricin derivatives with enhanced antibacterial activity. J. Pept. Sci. 5: 32-45.
135.Rhee, K. S., Anderson, L. M. and Sams, A. R. (1996) Lipid oxidation potential of beef, chicken, and pork. J. Food Sci. 61 (1): 8-12.
136.Rhee, K. S., Park, I. and Ziprin, Y. A. (1989) Effects of low concentrations of H2O2 on lipid oxidation and of storage and pH on nonheme iron content of raw beef muscle. J. Food Biochem. 13 (1): 31-38.
137.Rhee, K. S. and Ziprin, Y. A. (1987) Modification of the schricker nonheme iron method to minimize pigment effects for red meats. J. Food Sci. 52(5): 1174-1175.
138.Saito, H., Miyakawa, H., Tamura, Y., Shimamura, S. and Tomita, M. (1991) Potent bactericidal activity of bovine lactoferrin hydrolysate produced by heat treatment at acidic pH. J. Dairy Sci. 74: 3724-3730.
139.Sakai, T., Banno, Y., Kato, Y., Nozawa, Y. and Kawaguchi, M. (2005) Pepsin-digested bovine lactoferrin induces apoptotic cell death with JNK/SAPK activation in oral cancer cells. J. Pharmacol. Sci. 98 (1): 41-48.
140.Sanchez, L., Peiro, J. M., Castillo, H., Perez, M. D., Ena, J. M. and Calvo, M. (1992) Kinetic parameters for denaturation of bovine milk lactoferrin. J. Food Sci. 57: 873-879.
141.Schibli, D. J., Hwang, P. M. and Vogel, H. J. (1999) The structure of the antimicrobial active center of lactoferricin B bound to sodium dodecyl sulfate micelles. FEBS Lett. 46: 213-217.
142.Schibli, D. J., and Vogel, H. J. (2000) Structural studies of lactoferricin B and its antimicrobial active peptide fragments. In Lactoferrin, structure, function and application. Edited by Shimazaki, K. Elsevier Science, New York. pp. 27-35.
143.Schricker, B. R., Miller, D. D. and Stouffer, J. R. (1982) Measurement and content of nonheme and total iron in muscle. J. Food Sci. 47: 740.
144.Schricker, B. R. and Miller, D. D. (1983) Effects of cooking and chemical treatment on heme and nonheme iron in meat. J. Food Sci. 48: 1340-1343, 1349.
145.Sedmack, J. J. and Grossberg, S. E. (1977) A rapid, sensitive, and versatile assay for protein using Coomassie Brilliant Blue G250. Anal. Biochem. 79: 544-552.
146.Shaw, B. G. and Latty, J. B. (1982) Numerical taxonomic study of Pseudomonas strains from spoiled meat. J. Appl. Bacteriol. 52: 219-228.
147.Shaw, B. G. and Latty, J. B. (1984) A study of the relative incidence of different Pseudomonas groups on meat using a computer-assisted identification technique employing only carbon source tests. J. Appl. Bacteriol. 57: 59-67.
148.Shaw, B. G. and Latty, J. B. (1988) A numerical taxonomic study of non-motile non-fermentative Gram-negative bacteria from foods. J. Appl. Bacteriol. 65: 7-21.
149.Shimazaki, K.-I., Kawaguchi, A., Sato, T., Ueda, Y., Tomimura, T. and Shimamura, S. (1993) Analysis of human and bovine milk lactoferrins by rotofor and chromatofocussing. Int. J. Biochem. 25: 1653-1658.
150.Shimazaki, K.-I., Oota, K., Nitta, K. and Ke, Y. (1994) Comparative study of the iron-binding strengths of equine, bovine and human lactoferrins. J. Dairy Res. 61: 563-566.
151.Shin, K., Yamauchi, K., Teraguchi, S., Hayasawa, H., Tomita, M., Otsuka, Y. and Yamazaki, S. (1998) Antibacterial activity of bovine lactoferrin and its peptides against enterohaemorrhagic Escherichia coli O157:H7. Lett. Appl. Microbiol. 26: 407-411.
152.Shinmoto, H., Dosako, S. and Nakajima, I. (1992) Anti-oxidant activity of bovine lactoferrin on iron/ascorbate induced lipid peroxidation. Biosci. Biotechnol. Biochem. 56: 2079-2080.
153.Siden, I. and Boman, H. G. (1983) Escherichia coli mutants with an altered sensitivity to cecropin D. J. Bacteriol. 154 (1): 170-176.
154.Söerensen, M. and Söerensen, S. P. L. (1939) The protein in whey. C. R. Trav. Lab Carlsberg. 23: 55-99.
155.Spik, G., Coddeville, B., Mazurier, J., Bourne, Y., Cambillaut, C. and Montreuil, J. (1994) Primary and three-dimensional structure of lactotransferrin (lactoferrin) glycans. Advances in Experimental Medicine and Biology 357: 21-32.
156.St. Angelo, A. J., Vercellotti, J. R., Legendre, M. G., Vinnett, C. H., Kuan, H. W., James, C. and Dupuy, H. P. (1987) Chemical and instrumental analysis of warmed-over flavor in beef. J. Food Sci. 52 (5): 1163.
157.Steijns, J. M. and Hooijdonk, A. C. M. (2000) Occurrence, structure, biochemicalproperties and technological characteristics of lactoferrin. Br. J. Nutr. 1: 11-17.
158.Stevens, K. A., Sheldon, B. W., Klapes, N. A. and Klaenhammer, T. R. (1991) Nisin treatment for inactivation of Salmonella species and other gram-negative bacteria. Appl. Environ. Microbiol. 57 (12): 3613-3615.
159.Stevens, K. A., Sheldon, B. W., Klapes, N. A. and Klaenhamer, T. R. (1992) Effect of treatment condition on Nisin inactivation of Grem-Negative bacter. J. Food Prot. 55 (10): 763-766.
160.Strøm, M. B., Rekdal, Ø. and Svendsen, J. S. (2000) Antibacterial activity of 15-residue lactoferricin derivatives. J. Pept. Res. 56: 265-274.
161.Stumpe, S., Schmid, R., Stephens, D. L., Georgiou, G. and Bakker, E. P. (1998) Identification. of OmpT as the protease that hydrolyzes the antimicrobial peptide protamine before it enters growing cells of Escherichia coli. J. Bacteriol. 180: 4002-4006.
162.Tanaka, K., Ikeda, M., Nozaki, A., Kato, N., Tsuda, H., Saito, S. and Sekihara, H. (1999) Lactoferrin inhibits hepatitis C virus viremia in patients with chronic hepatitis C: a pilot study. Jpn. J. Cancer Res. 90: 367-371.
163.Tanaka, T., Omata, Y., Saito, A., Shimazaki, K., Yamauchi, K., Takase, M., Kawase, K., Igarashi, K. and Suzuki, N. (1995) Toxoplasma gondii: parasiticidal effects of bovine lactoferricin against parasites. Exp Parasitol. 81 (4): 614-617.
164.Tarladgis, B. G. (1962) Interpreatation of the spectra of meat pigments. 2. Cured meats. The mechanism of colour fading. J. Sci. Food Agric. 13: 485-491.
165.Tim, M. J. and Watts, B. M. (1958) Protection of cooked meat with phosphates. Food Technol. 12: 240.
166.Tomita, M., Bellamy, W., Takase, M., Yamauchi, K., Wakabayashi, H. and Kawase, K. (1991) Potent antibacterial peptides generated by pepsin digestion of bovine lactoferrin. J. Dairy Sci. 74: 4137-4142.
167.Tomita, M., Shimamura, S., Kawase, K., Fukuwatari, Y., Takase, M., Bellamy, W., Yamauchi, K., Wakabayashi, H. and Tokita, Y. (1997) Antimicrobial agents and method for treating products therewith. United States Patent 5656591.
168.Tomita, M., Takase, M., Bellamy, W. and Shimamura, S. (1994) A review: the active peptide of lactoferrin. Acta Paediatr. Jpn. 36: 585-591.
169.Tomita, M., Wakabayashi, H., Yamauchi, K., Teraguchi, S. and Hayasawa, H. (2002) Bovine lactoferrin and lactoferricin derived from milk: production and application. Biochem. Cell Biol. 80: 109-112.
170.Ulvatne, H., Samuelsen, O., Haukland, H. H., Kramer, M., Vorland, L. H. (2004) Lactoferricin B inhibits bacterial macromolecular synthesis in Escherichia coli and Bacillus subtilis. FEMS Microbiol. Lett. 237: 377-384.
171.Van der Kraan, M. I. A., Groenink, J., Nazmi, K., Veerman, E. C. I., Bolscher, J. G. M., Nieuw Amerongen, A. V. (2004) Lactoferrampin: a novel antimicrobial peptide in the N1-domain of bovine lactoferrin. Peptides 25: 177-183.
172.Varra, M. (1992) Agents that increase the permeability of the outer membrane. Microbil. Rev. 56: 395-411.
173.Vogel, H. J., Schibli, D. J., Jing, W., Lohmeier-Vogel, E. M., Epand, R. F. and Epand, R. M. (2002) Towards a structure-function analysis of bovine lactoferricin and related tryptophan- and arginine-containing peptides. Biochem. Cell Biol. 80: 49-63.
174.Vorland, L. H., Ulvatne, H., Rekdal, Ø. and Svendsen, J. S. (1999) Initial binding sites of antimicrobial peptides in Staphycoccus aureus and Escherichia coli. Scand. J. Infect. Dis. 31: 467-473.
175.Wakabayashi, H., Bellamy, W., Takase, M. and Tomita, M. (1992) Inactivation of Listeria monocytogenes by lactoferricin, a potent antimicrobial peptide derived from cow's milk. J. Food Prot. 55: 238-240.
176.Wakabayashi, H., Matsumoto, H., Hashimoto, K., Teraguchi, S., Takase, M. and Hayasawa, H. (1999) Inhibition of iron/ascorbate-induced lipid peroxidation by an N-terminal peptide of bovine lactoferrin and its acylated derivatives. Biosci. Biotechnol. Biochem. 63 (5): 955-957.
177.Walling. C., Partch, R. E. and Weil, T. (1975) Kinetics of the Decomposition of Hydrogen Peroxide Catalyzed by Ferric Ethylenediaminetetraacetate Complex. Proc. Natl. Acad. Sci. U. S. A. 72 (1): 140-142.
178.Waters, W. A. (1971) The kinetics and mechanism of metal-catalysed autoxidation. J. Am. Oil Chem. Soc. 48: 427-433.
179.Weinberg, E. D. (1984) Iron withholding: a defense against infection and neoplasia. Physiol. Rev. 64: 65-102.
180.Weinberg, E. D. (1997) The Lactobacillus anomaly: total iron abstinence. Perspect. Biol. Med. 40: 578-583.
181.Yamauchi, K., Hiruma, M., Yamazaki, N., Wakabayashi, H., Kuwata, H., Teraguchi, S., Hayasawa, H., Suegara, N. and Yamaguchi, H. (2000) Oral administration of bovine lactoferrin for treatment of tinea pedis. A placebo-controlled, double-blind study. Mycoses. 43: 197-202.
182.Yamauchi, K., Tomita, M., Giehl, T. J. and Ellison III, R. T. (1993) Antibacterial activity of lactoferrin and a pepsin-derived lactoferrin peptide fragment. Infect. Immun. 61: 719-728.
183.Yang, L., Harroun, T. A., Weiss, T. M. Ding, L. and Huang, H. W. (2001) Barrel-stave model or toroidal model? Acase study on melittin pores. Biophys. J. 81: 1475-1485.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top