|
中國國家標準,CNS 108960 (N6186)。1991。食品微生物之檢驗法。經濟部中央標準局印行,台北。
蘇遠志、黃世佑,1997,第三章 微生物之培養方法,微生物化學工程學,p.206,華香園出版社,台北。
Anderson, B. F., Baker, H. M., Norris, G. E., Rice, D. W., Baker, E. N. 1989. Structure of human lactoferrin: crystallographic structure analysis and refinement at 2.8A resolution. J. Mol. Biol., 209: 711-734.
Andersen, J. H., Osbakk, S. A., Vorland, L. H., Traavik, T. and Gutteberg, T. J. 2001. Lactoferrin and cyclic lactoferricin inhibit the entry of human cytomegalovirus into human fibroblasts. Antiviral Res 51: 141–149.
A.O.A.C. 1991. Official Method of Analysis, 16th ed., Virginia, USA: Association of Official Analytical Chemists International.
Aramaki, Y., Takano, S., Arima, H. and Tsuchiya, S. 2000. Induction of apoptosis in WEHI 231 cells by cationic liposomes. Pharm. Res. 17: 515–520.
Arnold, R. R., M. Brewer, and J. J. Gautier. 1980. Bactericidal activity of human lactoferrin: Sensitivity of a variety of microorganisms. Infect. Immun. 28:893-898.
Baker, H.M. and Baker, E.N. 2004. Lactoferrin and iron: structural and dynamic aspects ofbinding and release. BioMetals 17, 206-216.
Bellamy, W., Takase, M., Yamauchi, K., Wakabayashi, H., Kawase, K. and Tomita, M. 1992A. Identification of the bactericidal domain of lactoferrin. BBA 1121:130-136.
Bellamy, W., Takase, M., Wakabayashi, H., Kawase, K. and Tomita, M. 1992B. Antibacterial spectrum of lactoferricin B, a potent bactericidal peptide derived from the N-terminal region of bovine lactoferrin. J. Appl. Bacteriol. 73: 472–479
Bellamy, W., Yamauchi, K., Wakabayashi, H., Takase, M., Takakura, N., Simamura, S. 1994. Antifungal properties of lactoferricin B, a peptide derived from the N-terminal region of bovine lactoferrin. Lett. Appl. Microbiol. 18: 230–233.
Besalle, R., Gorea, A., Shalit, I., Metzger, J. W., Dass, C., Desiderio D. M. and Fridkin, M. 1993. Structure-function studies of amphiphilic antibacterial peptides. J. Med. Chem. 36, 1203-1209.
Beutler, B., and Poltorak, A. 2001. Sepsis and evolution of the innate immune response. Crit. Care Med. 29:S2-S7.
Bortner, C.A., Miller, R. D. and Arnold, R. R. 1986. Bactericidal effect of lactoferrin on Legionella pneumophila. Infect. Immun. 51, 373-377.
Bortner, C.A., Arnold, R. R. and Miller, R. D. 1989. Bactericidal effect of lactoferrin on Legionella pneumophils: effect of the physiological state of the organism. Can. J. Microbiol. 35, 1048-1051.
Branen, J. and Davidson, P. M. 2000. Activity of hydrolysed lactoferrin against foodborne pathogenic bacteria in growth media: the effect of EDTA. Lett. appl. microbiol. 30: 233-237.
Britten, M., Giroux, H. J. and Gaudin V. 1993. Effect of pH during heat processing of partially hydrolyzed whey protein. J. Dairy Sci. 77: 676-684.
Brock, J. 1995. Lactoferrin: a multifunctional immunoregulatory protein. Immunol. Today. 16, 417-419.
Brock, J. H. 2002. The physiology of lactoferrin. Biochem. Cell Biol. 80,1-6.
Castle, M., Nazarian, A., Yi, S. S. and Tempst, P. 1999. Lethal effects of apidaecin on Escherichia coli involve sequential molecular interactions with diverse targets. J. Biol. Chem. 274: 32555–32564
Chapple, D. S., Mason, D. J., Joannou, C. L., Odell, E. W., Gant, V. and Evans, R. W. 1998. Structure-function relationship of antibacterial synthetic peptides homologous to a helical surface region on human lactoferrin against Escherschia coli serotype O111. Infect. Immun. 66: 2434–2440.
Chapple, D. S., Joannou, C. L., Mason, D. J., Shergill, J. K., Odell, E. W., Gant, V. and Evans, R. W. 1998. A helical region on human lactoferrin—its role in antibacterial pathogenesis. Adv. Exp. Med. Biol. 443:215–220.
Chapple, D. S., Hussain, R., Joannou, C. L., Hancock, R. E. W., Odell, E., Evans, R. W. et al. 2004. Structure and association of human lactoferrin peptides with Escherichia coli lipopolysaccharide. Antimicrob. Agents Chemother. 48: 2190–2198.
Church, F. C., Swaisgood, H. E., Porter, D. H. and Catignani, G. L. 1983. Spectrophotometric assay using o-phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins J. Dairy Sci. 66:1219–1227.
Di Biase, A. M., Pietrantoni, A., Tinari, A., Siciliano, R., Valenti, P., Antonini, G., Seganti, L. and Superti, F. 2003. Heparin-interacting sites of bovine lactoferrin are involved in anti-adenovirus activity. J. Med. Virol. 69: 495-502.
Dionysius, D. A. and Milne, J. M. 1997. Antibacterial peptides of bovine lactoferrin: purification and characterization. J. Dairy Sci. 80: 667-674.
Eliassen, L. T., Berge, G., Sveinbjørnsson, B., Vorland, L., Svendsen, J. S. and Rekdal, Ø. 2002. Evidence for direct antitumor mechanism of action by bovine lactoferricin. Anticancer Res. Sep 22: 2703-2710.
Ellison, R. T., Giehl, T. J., Laforce, F. M. 1988. Damage of the outer membrane of enteric gram-negative bacteria by lactoferrin and transferrin. Infect. Immun., 56: 2744-2781.
Ellison III, R. T., LaForce, F. M., Giehl, T. J., Boose, D. S., Dumm, B. E. 1990. Lactoferrin and transferring damage of the Gram-negative outer membrane is modulated by Ca2+ and Mg2+. J. Gen. Microbiol. 136, 1437-1446.
Epand, R. M. and Vogel, H.J. 1999. Diversity of antimicrobial peptides and their mechanism of action. Biochim. Biophy. Acta 1462: 11-28.
Fadok, V. A., de Cathelineau, A., Daleke, D. L., Henson, P. M. and Bratton, D. L. 2001. Loss of phospholipid asymmetry and surface exposure of phosphatidylserine is required for phagocytosis of apoptotic cells by macrophages and fi broblasts. J. Biol. Chem. 276: 1071–1077.
Facon, M. J. and Skura, B. J. 1996. Antibacterial activity of lactoferricin, lysozyme and EDTA against Salmonella enteritidis. Int. Dairy J. 6: 303-313.
Gifford, J. L., Hunter, H. N. and Vogel, H. J. 2005. Lactoferricin, a lactoferrin derived peptide with antimicrobial, antiviral, and immunomodulatory activity (Review). Cell Mol. Life Sci. 62: 2588-2598.
Hancock, R. E. W. and Chapple, D. S. 1999. Peptide antibiotics. Antimicrob. Agents Chemother. 43: 1317-1323.
Hancock, R. E. W., and Wong, P. G. W. 1984. Compounds which increase the permeability of the Pseudomonas aeruginosa outer membrane. Antimicrob. Agents Chemother. 26: 48-52.
Haukland, H. H., Ulvatne, H., Sandvik, K. and Vorland, L. H. 2001. The antimicrobial peptides lactoferricin B and magainin 2 cross over the bacterial cytoplasmic membrane and reside in the cytoplasm. FEBS Lett. 508: 389–393
He, J. and Furmanski, P. 1995. Sequence specificity and transcriptional activation in the binding of lactoferrin to DNA. Nature 373: 721-724.
Heather, M. B., B. F. Anderson, R. D. Kidd, S. C. Shewry, and E. N. Baker. 2000. Lactoferrin three-dimensional structure: a framework for interpreting function. Lactoferrin : Structure, Function and Application. p3-15.
Hoek, K. S., Milne, J. M., Grieve, P. A., Dionysius, D. A. and Smith, R. 1997. Antibacterial activity of bovine lactoferrin-derived peptides. Antimicro. Agents Chemother. 41: 54-59.
Hof, W. V., Veerman, E. C. I., Helmerhorst, E. J., Amerongen, A. V. N., 2001. Antimicrobial peptides: properties and applicability. Biol. Chem. 382: 597-619.
Hunter, H. N., Demcoe, A. R., Jenssen, H., Gutteberg, T. J. and Vogel, H. J. 2005. Human lactoferricin is partially folded in aqueous solution and is better stabilized in a membrane mimetic solvent. Antimicrob. Agents Chemother. 49: 3387-3395.
Hwang, P. M., N. Zhou., X. Shan., C. H. Arrowsmith, and H. J. Vogel. 1998. Three-dimensional solution structure of lactoferricin B, an antimicrobial peptide derived form bovine lactoferrin. Biochem. 37: 4288-4298.
Iyer, S. and Lonnderal, B. 1993. Lactoferrin, lactoferrin receptors and iron metabolism. Eur. J. Clin. Nutr. 47: 232-241.
Jenssen, H., Andersen, J. H., Uhlin-Hansen, L., Gutteberg, T. J. and Rekdal, Ø. 2004. Anti-HSV activity of lactoferricin analogues is only partly related to their affi nity for heparan sulfate. Antiviral Res. 61: 101–109.
Jones, E. M., Smart, A., Bloomberg, G., Burgess, L. and Millar, M. R. 1994. Lactoferricin, a new antimicrobial peptide. J. Appl. Bacteriol. 77: 208-214.
Kang, J. H., Lee, M. K., Kim, K. L., Hahm, K.S. 1996. Structure- biological activity relationships of 11-residue highly basic peptide segment of bovine lactoferrin. Int. J. Peptide Prot. Res. 48: 357–363.
Kelbanoff, S. J. and Waltersdorph, A. M. 1990. Prooxidant activity of transferring and lactoferrin. J. Exp. Med. 172, 1293-1303.
Kreig, A. M., Yi, A. K., Matson, S., Waldschmidt, T. J., Bishop, G. A., Teasdale, R. 1995. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374: 546–549.
Kuipers, M. E., Vries, H. G., Eikelboom, M. C., Meijer, D. K. and Swart, P. J. 1999. Synergistic fungistatic effects of lactoferrin in combination with antifungal drugs against clinical Candida isolates. Antimicrob. Agents Chemother. 43(11): 2635-2641.
Kullberg, B. J., Netea, M. G., Vonk, A. G. and van der Meer, J. W. 1999. Modulation of neutrophil functions in host defense against disseminated Candida albicans infection in mice. FEMS Immunol. Med. Microbiol. 26: 299–307.
Kuwata, H., Yip., T. T., Tomita, M. and Hutchens., T. W. 1998. Direct evidence of the generation in human stomach of an antimicrobial peptide domain (lactoferricin) from ingested lactoferrin. Biochim. Biophys. Acta, Bioenerg. 1429: 129-141.
Levay, P. F. and Viljoen., M. 1995. Lactoferrin : a general review. Haematologica 80: 252-267.
Madigan, Michael T., et al. Brock Biology of Microorganims, 10th Edition. Prentice Hall: Upper Saddle River, NJ. 2002.
Matsuzaki, K. 1999. Why and how are peptide±lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes. Biochim. Biophys. Acta 1462, 1-10.
Metz-Boutigue, M. H., Jolles, J., Mazurier, J., Schoentgen, F., Legrand, D., Spik, G., Montreuil, J. and Jolles, P. 1984. Human lactotrasferrin: amino acid sequence and structural comparison with other transferrins. Eur. J. Biochem. 145, 659-676. Miyasaki, K. T., Bodeau, A. L., Ganz, T., Selsted, M. E., Lehrer, R. I. 1990. Sensitivity of oral, Gram-negative, facultative bacteria to the bactericidal activity of human neutrophil defensins. Infect Immun 58: 3934-3940.
Murdock, C. A. and Matthews, K. R. 2002. Antibacterial activity of pepsin-digested lactoferrin on foodborne pathogens in buffered broth systems and ultra-high temperature milk with EDTA. J. Appl. Microbiol. 93: 850-856.
Nguyen, L.T., Schibli, D.J., and Vogel, H.J. 2005. Structural studies and model membrane interactions of two peptides derived from bovine lactoferricin. J. Pept. Sci. 11:379-389.
Oren, Z., Lerman, J. C., Gudmundsson, G. H., Agerberth, B. and Shai, Y. 1999. Structure and organization of the human antimicrobial peptide LL-37 in phospholipid membranes: relevance to the molecular basis for its noncell- selective activity. Biochem. J. 341:501–513.
Prochiantz A. 2000. Messenger proteins: homeoproteins, TAT and others. Curr. Opin. Cell Biol. 12: 400–406
Rainard, P. 1986. Bacteriostatic activity of bovine milk lactoferrin against mastitic bacteria. Vet. Microbiol., 11: 387-392.
Recio, I. and Visser, S. 1998. Two ion-exchange chromatographic methods for the isolation of antibacterial peptides from lactoferrin in situ enzymatic hydrolysis on an ion-exchange membrane. J. Chromatogr. A 831:191-201.
SAS Ins. Stat. Anal. System. 2002. SAS procedure guide for personal computers. Version 8th ed. SAS Institude Inc. Cary, NC. U.S.A.
Sawyer, W. N. 1968. Heat denaturation of bovine β-lactoglobulins and relevance of disulfide aggregation. J. Dairy Sci. 51:323-329.
Shan-Ming, Y., Kanamaru, Y., Ikeda, S., Keneko, T., Kuwata, T., Nagaoka, S., Shimizu, M. and Sachdev, G. P. 2000. Identification of two molecular species in human milk-derived lactoferrin. In Lactoferrin: Structure, Function and Application. P. 17-25.
Shimazaki, K., Tazume, T., Uji, K., Tanaka, M., Kumura, H., Mikawa., K. and Shimo-oka, T. 1998. Properties of a heparin-binding peptide derived from bovine lactoferrin. J. Dairy Sci. 81:2841-2849.
Steijns, J. M. and A. C. M. Hooijdonk. 2000. Occurrence, structure, biochemical properties and technological characteristics of lactoferrin. Br. J. Nutr. 1: 11-17.
Strøm, M. B., Rekdal, Ø., Svendsen, J. S. 2000. Antibacterial activity of 15-residue lactoferricin derivatives. J. Peptide Res. 56: 265–274.
Strøm M. B., Rekdal Ø. and Svendsen J. S. 2002. The effects of charge and lipophilicity on the antibacterial activity of undecapeptides derived from bovine lactoferricin. J. Pept. Sci. 7: 36–43.
Strøm M. B., Haug B. E., Rekdal Ø., Skar M. L., Stense W. et al. 2002. Important structural features of 15-residue lactoferrin derivatives and methods for improvement of antimicrobial activity. Biochem. Cell Biol. 80: 65–74.
Takase, K. 1998. Reactions of denatured proteins with other cellular components to form insoluble aggregates and protection by lactoferrin. FEBS Letters 441:271-274.
Takase, K., Higashi, T. and Omura, T. 2002. Aggregate formation and the structure of the aggregate of disulfide-reduced proteins. J. Protein Chem. 21:427-433.
Tomita, M., Bellamy, W., Takase, M., Yamauchi, K., Wakabayashi, H. and Kawase, K. 1991. Potent antibacterial peptides generated by pepsin digestion of bovine lactoferrin. J. Dairy Sci. 74: 4137-4142.
Tortora, G. J., Funke, B. R., Case, C. L. 1982. Microbiology growth (chapter 6) (pp.164-165), Microbiology (an Introduction), The B enjamin/cummings Publishing company, Inc., Menlo Park, California.
Tomita, M., Takase, M., Bellamy, W. and Shimamura, S. 1994. A review: the active peptide of lactoferrin. Acta Paediatr. Jpn. 36: 585-591.
Ueta, E., Tanida, T. and Osaki, T. 2001. A novel bovine lactoferrin peptide, FKCRRWQWRM, suppresses Candida cell growth and activates neutrophils. J. Pept. Res. 57: 240–249.
Ulvatne, H. and L. H. Vorland. 2001. Bactericidal kinetics of 3 lactoferricins against Staphylococcus aureus and Escherichia coli. Scand. J. Infect. Dis. 33:507-511.
Ulvatne, H., Samuelsen, O., Haukland, H. H., Kramer, M. and Vorland, L. H. 2004. Lactoferricin B inhibits bacterial macromolecular synthesis in Escherichia coli and Bacillus subtilis. FEMS Microbiol. Lett. 237:377-384.
Urrutia, R., Cruciani, R. A., Barker, J. L., Kachar, B. 1989. Spontaneous polymerization of the antibiotic peptide magainin 2. FEBS Lett. 247: 17–21.
van Berkel, P. H. C., Geerts, M. E. J., van Veen, H. A., Mericskay, M., deBoer, H. A. and Nuijens, J. H. 1997. N-terminal stretch Arg2, Arg3, Arg4 and Arg5 of human lactoferrin is essential for binding to heparin, bacterial lipopolysaccharide, human lysozyme and DNA. Biochem. J. 328: 145-151.
van der Kraan, M. I. A., Groenink, J., Nazmi, K., Veerman, E. C. I., Bolscher, J. G. M. and Amerongen, A. V. N. 2004. Lactoferrampin: a novel antimicrobial peptide in the N1-domain of bovine lactoferrin. Peptides 25: 177-183.
van der Kraan, M. I. A., Nazmi, K., Teeken, A., Groenink, J., van’t Hof, W., Veerman, E. C. I., Bolscher, J. G. M. and Amerongen, A. V. N. 2005. Lactoferrampin, an antimicrobial peptide of bovine lactoferrin, exerts its candidacidal activity by a cluster of positively charged residues at the C-terminus in combination with a helix-facilitating N-terminal part. Biol. Chem. 386: 137-142.
Venkitanarayanan, K.S., Zhao, T. and Doyle, M.P. 1999. Antibacterial e¡ect of lactoferricin B on Escherichia coli O157:H7 in ground beef. J. Food Protect. 62, 747^750.
Vogel, H. J., Schibli, D. J., Jing, W., Lohmeier-Vogel, E. M., Epand, R. F. and Epand, R. M. 2002. Towards a structure-function analysis of bovine lactoferricin and related tryptophan- and arginine-containing peptides. Biochem. Cell Biol. 80: 49–63.
Vorland, L. H., Ulvatne, H., Andersen, J., Haukland, H., Rekdal, Y., Svendsen, S. and Gutteberg, T. J. 1998. Lactoferricin of bovine is more active than lactoferricins of human, murine and caprine orgin. Scand. J. Infect Dis. 30: 513-517.
Vorland, L. H., Ulvatne, H., Andersen, J., Haukland, H., Rekdal, Y., Svendsen, S. and Gutteberg, T. J. 1999A. Antibacterial effects of lactoferricin B. Scand. J. Infect Dis. 31: 179-184.
Vorland, L. H., Ulvatne, H., Andersen, J., Haukland, H., Rekdal, Y., Svendsen, S. and Gutteberg, T. J. 1999B. Interference of the antimicrobial peptide lactoferricin B with the action of various antibiotics against Escherichia coli and Staphylococcus aureus. Scand. J. Infect Dis. 31: 173-177.
Weinberg, E. D. 1984. Iron withholding: a defense against infection and neoplasia. Physiol. Rev. 64: 65-102.
Yamauchi, K., Tomita, M., Giehl, T. J., Ellison, R. T. 1993. Antibacterial activity of lactoferrin and a pepsin-derived lactoferrin peptide fragment. Infect Immun. 61: 719–728.
Yang, N., Lejon, T., Rekdal, Ø. 2003. Antitumor activity and specificity as a function of substitutions in the lipophilic sector of helical lactoferrin-derived peptides. J.Pept.Sci. 9: 300-311.
Yasin, B., Pang, M., Turner, J. S., Cho, Y., Dinh, N. N., Waring, A. J. et al. 2000. Evaluation of the inactivation of infectious herpes simplex virus of host-defense peptides. Eur. J. Clin. Microbiol. Infect. Dis. 19:187–194.
Yoo, Y. C., Watanabe, R., Koike, Y., Mitobe, M., Shimazaki, K., Watanabe, S. and Azuma, I. 1997. Apoptosis in human leukemic cells induced by lactoferricin, a bovine milk proteinderived peptide: involvement of reactive oxygen species. Biochem. Biophys. Res. Commun. 237: 624-628.
Zhang, L., Rozek, A. and Hancock, R. E. W. 2001. Interaction of cationic antimicrobial peptides with model membranes. J. Biol. Chem. 276: 35714–35722
Zhou, N., D. P. Tieleman, and H. J. Vogel. 2004. Molecular dynamics simulations of bovine lactoferricin: turning a helix into a sheet. Biometals 17: 217-223.
|