跳到主要內容

臺灣博碩士論文加值系統

(98.84.18.52) 您好!臺灣時間:2024/10/10 18:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉幸宜
研究生(外文):Liu, Hsing-Yi
論文名稱:不同生長性能雞隻脂質代謝相關基因表現之比較
論文名稱(外文):A comparative study of lipid metabolism-related gene expression in chickens with different growth performances
指導教授:陳珠亮陳珠亮引用關係
指導教授(外文):Chen, Chu-Liang
學位類別:碩士
校院名稱:東海大學
系所名稱:畜產與生物科技學系
學門:農業科學學門
學類:畜牧學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:71
中文關鍵詞:脂質代謝生長
外文關鍵詞:chickenlipid metabolismgrowth
相關次數:
  • 被引用被引用:0
  • 點閱點閱:158
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
土雞由於國人偏愛的飲食風味及煮食習慣,在畜牧產業中一直佔有一定的市場。因此了解土雞生長生理是一需關注的課題,以便維持現有的優點,使之持續受到消費者青睞。中興大學據共同源祖選育具不同表現性狀的土雞,其中B品系相較L2品系具有較佳的生長性能。本試驗首先選用這兩種品系16週齡土雞為材料,探討生長與脂質代謝之關係。在公雞部份,藉由偵測比較相關基因mRNA表現發現,B比L2品系在肝臟具有較高的脂質合成作用,在腿部肌肉亦有較高的脂肪酸吸收能力。然而在脂肪組織,L2比B品系具有較高的細胞分化以及解脂能力。在母雞部分,與公雞不同的是L2品系在肝臟脂質合成顯示較B品系高。另外取同樣由中興大學飼養的保種雞中,生長性能差異最大的石歧與金門雞,比較其脂質代謝之差異。石歧雞不僅較重,亦有較多的腹脂,同時在肝臟脂質合成活動、脂肪組織中細胞分化與解脂作用、以及腿肌脂肪酸吸收能力都較金門雞高。這些結果指出雞隻生長性狀與其在肝臟、肌肉或脂肪組織脂質代謝方式有關。
Country chicken has a significant market share in the poultry industry in Taiwan. Therefore, it is important to understand the growth and physiology of country chicken to help maintain its superior characteristics and market share. Two lines, namely B and L2, were derived from selection of country chicken displaying different phenotypes from a common seed stock by a team at Chunghsin University. B line is of better growth performance than L2 line. In this study, 16 week-old chickens of the two lines were used to investigate whether any correlation exists between growth and fat metabolism. For roosters, analysis of mRNA expression showed that genes involved in lipogenesis and genes involved in fatty acid uptake were expressed at higher levels in liver and leg muscles, respectively, of the B than L2 line. However, higher cell differentiation and lipolysis were found in adipose tissue of the L2 than B line. For hens, in contrary to what was observed in roosters, genes involved in lipogenesis were expressed at higher levels in liver of the L2 than B line. In addition, fat metabolism of Shek-ki and Quemoy, two native chickens raised at Chunghsin University that showed the widest gap in growth performance, was compared. Shek-ki outperforms Quemoy in weight, amounts of abdominal fat, lipogenesis activity, cell differentiation and lipolysis in fat tissue, fatty acid uptake in leg muscles. All together, the results indicated that growth phenotype of chicken is correlated to fat metabolism in liver, muscle or adipose tissue.
表次 3
圖次 4
壹、摘要 6
貳、前言 7
参、文獻回顧 9
一、台灣養雞產業概況 9
二、能量與脂質代謝 11
(一)脂質來源 11
(二)肝臟脂質合成 12
1)Fatty acid synthase(FAS) 13
2)Stearoyl-CoA desaturase (SCD) 15
3)Sterol regulatory element binding proteins(SREBPs) 17
(三)脂質運輸 19
三、脂質的蓄積 21
(一)脂肪細胞數目的增加(Hyperplasia) 21
(二)脂肪細胞體積的增大(Hypertrophy) 24
1)三酸甘油酯的合成 24
2)解脂作用(Lipolysis) 26
(三)脂肪細胞激素(Adipokines) 29
肆、材料與方法 33
一、實驗材料: 33
二、總核醣核酸(total ribonucleic acid, total RNA)之萃取 33
三、反轉錄(Reverse Transcription) 34
四、即時聚合酶連鎖反應(real-time quantitative PCR) 34
五、肌肉組織冷凍切片及oil-red O染色 37
六、統計分析 37
伍、結果與討論 38
試驗一、台灣土雞之生長與脂質代謝 38
一、台灣土雞品系間各項重量之差異 38
二、台灣土雞公雞之生長與脂質代謝 38
(一)B與L2公雞品系間肝臟脂質代謝之比較 38
(二)、B與L2公雞品系間脂肪組織脂質代謝之比較 39
(三)、B與L2公雞品系間肌肉脂質代謝之比較 41
三、台灣土雞母雞之生長與脂質代謝 42
(一) B與L2母雞品系間肝臟脂質代謝之表現 42
(二)、B與L2母雞品系間脂肪組織基因之比較 42
(三)、B與L2母雞品系間肌肉脂質代謝之比較 43
試驗二、保種雞之生長與脂質代謝 45
一、保種雞品系間各項重量之差異 45
二、保種雞品系間肝臟脂質代謝之表現 45
三、保種雞品系間脂肪組織脂質代謝之比較 45
四、保種雞品系間肌肉脂質代謝之比較 46
陸、結論 59
柒、參考文獻 60
捌、英文摘要 71
行政院農業委員會。2004。九十三年台灣農業統計年報。行政院農業委員會。台北。台灣。
李淵百、陳志峰。1998。中興大學土雞品系推廣手冊。國立中興大學畜牧學系。台中。
李淵百。1989。台灣的土雞。國立中興大學畜牧學系。台中。
陳奕廷。2004。雞脂質利用與產蛋率的探討。碩士論文。東海大學。台中。
趙清賢、林旻蓉、賴元亮、蘇夢蘭、何玉珍、陳志峰、李淵百。2005。台灣商用紅羽土機與黑羽土雞的生長性能。中畜會誌。34(2):65-78。
賴元亮。1992。日糧中不同熱能蛋白質比對台灣土雞生長性能及腹部脂肪組織發育之影響。碩士論文。國立中興大學。台中。
蘇晉暉。2006。商用紅羽土機與興大選育土雞於生長性狀、肌肉性狀與免疫能力之差異。碩士論文。國立嘉義大學。嘉義。
Ahima, R. S. and J. S. Flier. 2000. Adipose tissue as an endocrine organ. Trends Endocrinol. Metab. 11: 327-332.
Amri, E. Z., B. Bertrand, G. Alihaud, and P. Grimaldi. 1991. Regulation of adipose cell differentiation. 1. Fatty acids are inducers of the aP2 gene expression. J. Lipid Res. 32: 1449-1456.
Arimura, N., T. Horiba, M. Imagawa, M. Shimizu, and R. Sato. 2004. The peroxisome proliferators-activated receptor r regulates expression of the perilipin gene in adipocytes. J. Biol. Chem. 279: 10070-10076.
Arita, Y., S. Kihara, N. Ouchi, M. Takahashi, K. Maeda, J-I Miyagawa, K. Hotta, I. Shimomura, Y. Nakamura, K. Miyaoka, H. Kuriyama, M. Nishida, S. Yamashita, K. Okubo, K. Matsubara, M. Muraguchi, Y. Ohmoto, T. Funahashi, Y. Matsuzawa. 1999. Paradoxical Decrease of an Adipose-Specific Protein, Adiponectin, in Obesity. Biochem. Biophys. Res. Commun. 257: 79-83.
Arvidsson, E., L. Blomqvist, and M. Ryden. 2004. Depot-specific differences in perilipin mRNA but not protein expression in obesity. J. Intern. Med. 255: 595-601.
Bai, Z. B. CHENG, Q. YU, C. Li, P. He, X. Mao. 1996. Effects of Leptin on Expression of Acyl-coenzymeA:Cholesterol Acyltransferases-1 in Cultured Human Monocyte-macrophages. Journal of Huazhong University of Science and Technology. 24: 563-565.
Baudet, M. L., E. J. Sander, and S. Harvey. 2003. Retinal growth hormone in the chick embryo. Endocrinology. 144: 5459-5468.
Bennett, M. K., J. M. Lopez, H. B. Sanchez, and T. F. Osborne. 1995. Sterol Regulation of Fatty Acid Synthase Promoter. J. Biol. Chem. 270: 25578-25583.
Bishop, M. L., J. L. Duben-Engelkirk, and E. P. Fody. 2000. Clinical chemistry. pp. 232-259. Lippincott Williama & Wilkins, Philadelphia.
Bist, A., P. E. Fielding, and C. J. Fielding. 1997. Two sterol regulatory element-like sequences mediate up-regulation of caveolin gene transcription in response to low density lipoprotein free cholesterol. Proc. Natl. Acad. Sci. 94: 10693-10698.
Blanchette-Mackie, E. J., N. K. Dwyer, T. Barber, R. A. Coxey, T. Takeda, C. M. Rondinone, J. L. Theodorakis, A. S. Greenberg, and C. Londos. 1995. Perilipin is located on the surface layer of intracellular lipid droplets in adipocytes. J. Lipid Res. 36: 1211-1226.
Bocher, V., I. Pineda-Torra, J. C. Fruchart, and B. Staels. 2002. PPARs: transcription factors controlling lipid and lipoprotein metabolism. Ann. N.Y. Acad. Sci. 967: 7-18.
Brasaemle, D. L., B. Rubin, I. A. Harten, J. Gruia-Gray, A. R. Kimmel, and C. Londos. 2000. Perilipin a increases triacylglycerol storage by decreasing the rate of triacylglycerol hydrolysis. J. Biol. Chem. 275: 38486-38493.
Calabotta, D. F., J. A. Cherry P. B. Siegel, and E. M. Gregory. 1983. Lipogenesis and lipolysis in normal and Dwarf chickens from lines selected for high and low body weight. Poult. Sci. 62: 1830-1837.
Calabotta, D. F., J. A. Cherry, P. B. Siegel, and D. E. Jones. 1985. Lipogenesis and lipolysis in fed and fasted chicks from high and low body weight lines. Poult. Sci. 64: 700-704.
Cartwright, A. L. 1991. Adipose cellularity in gallus domesticus: investigations to control body composition in growing chickens. J. Nutr. 121: 1486-1497.
Chandran, M., T. Ciaraldi, S. A. Phillips, and R. R. Henry. 2003. Adiponectin: More than just another fat cell hormones? Diabetes Care. 26: 2442-2450.
Chiba, T., K. Sato, S. Tachibana, K. Takahashi, A. Nishida, and Y. Akiba. 2003. Preparation of monoclonal antibody against chicken apolipoprotein B and development of enzyme liked immunosolvent assay (ELISA) method with the antibody aiming at the optimization of lipid metabolism in chickens. J. Poult. Sci. 40: 212-220.
Cock, T. A. and J. Auwerx. 2004. PPARr fundamental role in adipogenesis. International Congress Series. 1262: 47-50.
Coe, N. R., M. A. Simpson, and D. A. Bernlohr. 1999. Targeted disruption of the adipocyte lipid-binding protein (aP2 protein) gene impairs fat cell lipolysis and increases cellular fatty acid levels. J. Lipid Res. 40: 967-972.
Diot, C., P. Lefevre, C. Herve, B. Belloir, M. Narce, M. Damon, J. P. Poisson, J. Mallard, and M. Douaire. 2000. Stearoyl-CoA desaturase 1 coding sequences and antisense RNA affect lipid secretion in transfected chicken LMH hepatoma cells. Arch. Biochem. Biophys. 380: 243-250.
Diot, C., P. Lefevre, C. Herve, B. Belloir, M. Narce. 2000. Stearoyl-CoA desaturase 1 coding sequences and antisense RNA affect lipid secretion in transfected chicken LMH hepatoma cells. Arch. Biochem. Biophys. 380: 243-250.
Dobrzyn, A. and J. M. Ntambi. 2005. The role of stearoy-CoA desaturase in the control of metabolism. Prostaglandins, Leukotrienes and Essential Fatty Acids. 73: 35-41.
Dobrzyn, P., A. Dobrzyn, M. Miyazaki, P. Cohen, E. Asilmaz, D. G. Hardie, J. M. Friedman, and J. M. Ntambi. 2004. Stearoyl-CoA desaturase 1 deficiency increases fatty acid oxidation by acitivating AMP-activated protein kinase in liver. Proc. Natl. Acad. Sci. 101: 6409-6414.
Donaldson, W. E. 1990. Lipid metabolism in liver of chicks: Response to feeding. Poult. Sci. 69: 1183-1187.
Donnelly, L. E., A. Cryer, and S. C. Butterwith. 1993. Comparison of the rates of proliferation of adipocyte precursor cells derived from two lines of chicken which differ in their rates of adipose tissue development. Br. Poult. Sci. 34: 187-193.
Eberlé, D., H. Bronwyn, B. Pascale, F. Pascal, and F. Fabienne. 2004. SREBP transcription factors: master regulators of lipid homeostasis. Biochimie. 86: 839-848.
Foufelle, F., B Gouhot, J. P. Pegorier, D. Perdereau, J. Girard and P. Ferre. 1992. Glucose stimulation of lipogenic enzyme gene expression in cultured white adipose tissue. J. Biol. Chem. 267: 20543-20546.
Fruebis, J., T. S. Taso, S. Javorschi, D. Ebbets-Reed, M. R. Erickson, F. T. Yen, B. E. Bihain, and H. F. Lodish. 2001. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc. Natl. Acad. Sci. 98: 2005-2010.
Frühbeck, G., J. Gómez-Ambrosi, F. J. Muruzábal, and M. A. Burrell. 2001. The adipocyte: a model for integration of endocrine and metabolic signaling in energy metabolism regulation. Am J. Physiol. Endocrinol. Metab. 280:827-847.
Fu, Yuchang., N. Luo, R. L. Klein, and W. T. Garvey. 2005. Adiponectin promotes adipocyte differentiation, insulin sensitivity, and lipid accumulation: potential role in autoregulation of adipocyte metabolism and adipose mass. J. Lipid Res. 46: 1369-1379.
Gerbens, F., A. Jansen, A. J.M. Erp, F. Harders, T. H.E. Meuwissen, G. Rettenberger, J. H. Veerkamp, M. F.W. Pas. 1998. The adipocyte fatty acid-binding protein locus: characterization and association with intramuscular fat content in pigs. Mamm. Genome. 9: 1022-1026.
Gerbens, F., D. J. Koning, F. L. Harders, T. H. E. Meuwissen, L. L. G. Janss, M. A. M. Groenen, J. H. Veerkamp, J. A. M. Arendonk, and M. F. W. Pas. 2000. The affect of adipocyte and heart fatty acid-binding protein genes on intramuscular fat and backfat content in Meishan crossbred pigs. J. Anim. Sci. 78: 552-559.
Goldberg, I. J. 1996. Lipoprotein lipase and lipolysis: central roles in lipoprotein metabolism and atherogenesis. J. Lipid Res. 37: 693-707.
Goldman, R. D., S. Khuon, Y. H. Chou, P. Opal, and P. M. Steinert. 1996. The function of intermediate filaments in cell shape and cytoskeletal integrity. J. Cell Biol. 134: 971-983.
Greenberg, A. S., J. J. Egan, S. A. Wek, M. C. Moos, C. Londos, and A. R. Kimmel. 1993. Isolation of cDNA for perilipins A and B: sequence and expression of lipid droplet-associated proteins of adipocytes. Proc. Natl. Acad. Sci. 90: 12035-12039.
Gregoire, F. M. 2001. Adipocyte differentiation: From fibroblast to endocrine cell. Exp. Biol. Med. 226: 997-1002.
Gregoire, F. M., C. M. Smas, and H. S. Sul. 1998. Understanding Adipocyte Differentiation. Physiol. Rev. 78: 783-809, 1998.
Griffin, H. D., K. Guo, D. Windsor, and S. C. Butterwith. 1992. Adipose tissue lipogenesis and fat deposition in leaner broiler chickens. J. Nutr. 122: 363-368.
Griffin, H. D., K. Guo, K. Windsor, and S. C. Butterwith. 1992. Adipose tissue lipogenesis and fat deposition in leaner broiler chickens. J. Nutr. 122: 363-368.
Griffin, H. D., S. C. Butterwith, and C. Goddard. 1987. Contribution of lipoprotein lipase to differences in fatness between broiler and layer-strain chickens. Br. Poult. Sci. 28: 197-206.
Griffin, H., and D. Hermier. 1988. Plasma lipoprotein metabolism and fattening in poultry. In “Leanness in Domestic Birds” (B. Leclercq and C. C. Whitehead, Eds.), pp. 175-201. Butterworths, London.
Grimaldi, P. A. 2001. The roles of PPARs in adipocyte differentiation. Prog Lipid Res. 40:269-281.
Hargis, P. S. 1991. Symposium on current topics in avian lipid metabolism and biochemistry. J. Nutr. 121: 1470.
Hermier, D. 1997. Lipoprotein Metabolism and Fattening in Poultry. J. Nutr. 127: 805-808.
Hertzel, A. V., L. A. Smith, A. H. Berg, G. W. Cline, G. I. Shulman, P. E. Scherer, and D. A. Bernlohr. 2005. Lipid metabolism and adipokine levels in faty acid-binding protein null and transgenic mice. Am. J. Physiol. Endocrinol. Metab. 290: E814-E823.
Hood, R. L. 1982. Correlated responses for lipogenesis and adipose tissue cellularity in chicken selected for body weight gain, food consumption, and food conversion efficiency. Poult. Sci. 61: 117-121.
Horton, J. D., I. Shimomura, M. S. Brown, R. E. Hammer, J. L. Goldstein, and H. Shimano. 1998. Activation of Cholesterol Synthesis in Preference to Fatty Acid Synthesis in Liver and Adipose Tissue of Transgenic Mice Overproducing Sterol Regulatory Element-binding Protein-2. J. Clin. Invest. 101: 2331-2339.
Horton, J. D., I. Shimomura, S. Ikemoto, Y. Bashmakov, and R. E. Hammer. 2003. Overexpression of Sterol Regulatory Element-binding Protein-1a in Mouse Adipose Tissue Produces Adipocyte Hypertrophy, Increased Fatty Acid Secretion, and Fatty Liver. J. Biol. Chem. 278: 36652-36660.
Hotamisligil, G. S., R. S. Johnson, R. J. Distel, R. Ellis, V. E. Papaioannou, B. M. Spiegelman. 1996. Uncoupling of obesity from insulin resistance through a targeted mutation in aP2, the adipocyted fatty acid binding protein. Science. 22: 1377-1379.
Houseknecht, K. L. and M. E. Spurlock. 2003. Leptin regulation of lipid homeostasis: dietary and metabolic implications. Nutr. Res. Rev. 16: 83-96.
Hu, E, P. Liang, B. M. Spiegelman. 1996. AdipoQ is a noval adipose-specific gene dysregulated in obesity . J. Biol. Chem. 271: 10697-10703.
Kadowaki, T. and T. Yamauchi. 2005. Adiponectin and adiponectin receptors. Endocr. Rev. 26: 439-451.
Kawabe, Y., R. Sato, K. Matsumoto, A. Honda, Y. Wada, Y. Yazaki, A. Endo, A. Takano, I. Itakura, and T. Kodama. 1996. Regulation of fatty acid synthase expression by cholesterol in human cultured cells. Biochem. Biophys. Res. Commun. 219: 515-520.
Kim, S. and N. Moustaid-Moussa. 2000. Secretory, endocrine and autocrine/paracrine function of the adipocyte. J. Nutr. 130: 3110S-3115S.
Kliewer, S. A., J. M. Lenhard, T. M. Willson, I. Patel, D. C. Morris, and J. M. Lehmann. 1995. A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor γ and promotes adipocyte differentiation. Cell. 83: 813-819.
Kubota, N., Y. Terauchi, H. Miki, H. Tamemoto, T. Yamauchi, K. Komeda, S. Satoh, R. Nakano, C. Ishii, T. Sugiyama, K. Eto, Y. Tsubamoto, A. Okuno, K. Murakami, H. Sekihara, G. Hasegawa, M. Naito, Y. Toyoshima, S. Tanaka, K. Shiota, T. Kitamura, T. Fujita, O. Ezaki, S. Aizawa, R. Nagai, K. Tobe, S. Kimura, and T. Kadowaki. 1999. PPARr mediates high-fat diet-induced adipocyte hypertrophy and insulin resistance. Mol. Cell. 4: 597-609.
Kumar, N., J. Robidoux, K. W. Daniel, G. Guzman, L. M. Floering, and S. Collins. 2007. Requirement of vimentin filament assembly for β3-adrenergic receptor activation of ERK MAP kinase and lipolysis. J. Biol. Chem. 282: 9244-9250.
Kuo, A. Y., M. A. Cline, E. Werner, P. B. Siegel, and D. M. Denbow. 2005. Leptin effects on food and water intake in lines of chickens selected for high or low body weight. Physiology & Behavior. 84: 459-464.
Lakshmanan, M. R., C. M. Nepokroeff, and J. W. Porter. 1972. Control of the Synthesis of Fatty-Acid Synthetase in Rat Liver by Insulin, Glucagon, and Adenosine 3':5' Cyclic Monophosphate. Proc. Natl. Acad. Sci. 69: 3516-3519.
LeClercq, B. 1984. Adipose tissue metabolism and its control in bird. Poult. Sci. 63: 2044
LeClercq, B., J. C. Blum. 1980 and J. P. Boyer. Selecting broilers for low or high abdominal fat: initial observations. Br. Poult. Sci. 21: 107-113.
Lefevre, P., C. Diot, P. Legrand, and M. Douaire. 1999. Hormonal regulation of stearoyl coenzyme-A desaturase 1 activity and gene expression in primary cultures of chicken hepatocytes. Arch. Biochem. Biophys. 368: 329-337.
Lefevre, P., E. Tripon, C. Plumelet, M. Douaire, and C. Diot. 2001. Effects of polyunsaturated fatty acids and clofibrate on chicken stearoyl-CoA desaturase 1 gene expression. Biochem. Biophys. Res. Commun. 280: 25-31.
Lefevre, P., E. Tripon, C. Plumelet, M. Douaire, and C. Diot. 2001. Effects of polyunsaturated fatty acids and clofibrate on chicken stearoyl-CoA desaturase 1 gene expression. Biochem. Biophys. Res. Commun. 280: 25-31.
Leveille, A. G., D. R. Romsos, Y. Y. Yeh, E. K. O’Hea. 1975. Lipid biosynthesis in the chick. A consideration of site of synthesis, influence of diet and possible regulatory mechanisms. Poult. Sci. 54: 1075-1093.
Lieber, J. G., and R. M. Evans. 1996. Disruption of the vimentin intermediate filament system during adipose conversion of 3T3-L1 cells inhibits lipid droplet accumulation. J. Cell Sci. 109: 3047-3058.
Londos, C., D. L. Brasaemle, C. J. Schultz, D. C. Adler-Wailes, D. M. Levin, A. R. Kimmel, and C. M. Rondinone. 1999. On the control of lipolysis in adipocytes. Ann. N.Y. Acad. Sci. 892: 155-168.
Maeda, K.,K. Okubo, I. Shimomura, T. Funahashi, Y. Matsuzawa, K. Matsubara. 1996. cDNA Cloning and Expression of a Novel Adipose Specific Collagen-like Factor, apM1 ( Adipose Most Abundant Gene Transcript 1). Biochem. Biophys. Res. Commun. 221: 286-289.
Mandrup, S. and M. D. Lane. 1997. Regulating adipogenesis. J. Biol. Chem. 272: 5367-5370.
Matsubara, Y., K. Sato, H. Ishii, and Y. Akiba. 2005. Changes in mRNA expression of regulatory factors involved in adipocyte differentiation during fatty acid induced adipogenesis in chicken. Comp. Biochem. Physiol.
Miyazaki, M., Y. C. Kim, and J. M. Ntambi. 2001. A lipogenic diet in mice with a disruption of the stearoyl-CoA desaturase 1 gene reveals a stringent requirement of endogenous monounsaturated fatty acids for triglyceride synthesis. J. Lipid Res. 42: 1018-1024.
Moon, Y. S., M. J. Latasa, M. J. Griffin, and H. S. Sul. 2002. Suppression of fatty acid synthase promoter by polyunsaturated fatty acids. J. Lipid Res. 43: 691-698.
Morimoto, C., K. Kameda, T. Tsujita, and H. Okuda. 2001. Relationships between lipolysis induced by various lipolytic agents and hormone-sensitive lipase in rat fat cells. J. Lipid Res. 42: 120-127.
Morrison, R. F. and S. R. Farmer. 2000. Hormonal signaling and transcriptional control of adipocyte differentiation. J. Nutr. 130: 3116S-3121S.
Müller, G., J. Ertl , M. Gerl, and G. Preibisch. 1997. Leptin Impairs Metabolic Actions of Insulin in Isolated Rat Adipocytes. J. Biol. Chem. 272: 10585-10593.
Ntambi, J. M. and M. Miyazaki. 2004. Regulation of stearoyl-CoA desaturases and role in metabolism. Prog. Lipid Res. 43: 91-104.
Ntambi, J. M. M. Miyazaki, J. P. Stoehr, H. Lan, C. M. Kendziorski, B. S Yandell, Y. Song, P. Cohen, J. M. Friedman, and A. D. Attie. 2002. Loss of stearoyl-CoA desaturase-1 function protects mice against adiposity. Proc. Natl. Acad. Sci. 99: 11482-11486.
Paulauskis, J. D., and H. S. Sul. 1988. Cloning and expression of mouse fatty acid synthase and other specific mRNAs. Developmental and hormonal regulation in 3T3-L1 cells. J. Biol. Chem. 263: 7049-7054.
Rahman, S. M., A. Dobrzyn, P. Dobrzyn, S. H. Lee, M. Miyazaki, and J. M. Ntambi. 2003. Stearoyl-CoA desaturase 1 deficiency elevates insulin-signaling components and down-regulates protein-tyrosine phosphatase 1B muscle. Proc. Natl. Acad. Sci. 100: 11110-11115.
Rahman, S. M., A. Dobrzyn, S. H. Lee, P. Dobrzyn, M. Miyazaki, and J. M. Ntambi. 2005. Stearoyl-CoA desaturase 1 deficiency increases insulin signaling and glycogen accumulation in brown adipose tissue. Am. J. Physiol. Endocrinol. Metab. 288: E381-E387.
Rajala, M. W. and P. E. Scherer. 2003. Minireview: the adipocyte-at the crossroads of energy homeostasis, inflammation, and atherosclerosis. Endocrinology. 144: 3765-3773.
Ramsay, T. G. 2001. Porcine leptin alters insulin inhibition of lipolysis in porcine adipocyte in vitro. J. Anim. Sci. 79: 653-657.
Ren, D., T. N. Collingwood, E. J. Rebar, A. P. Wolffe, and H. S. Camp. 2002. PPARr knockdown by engineered transcription factors: exogenous PPARr2 but not PPAr1 reactivates adipogenesis. Genes Dev. 16: 27-32.
Rosen, E. D., C. J. Walkey, P. Puigserver, and B. M. Spiegelman. 2000. Transcriptional regulation of adipogenesis. Genes Dev. 14: 1293-1307.
Sarria, A. J., S. R. Panini, and R. M. Evans. 1992. A functional role for vimentin intermediate filaments in the metabolism of lipoprotein-derived cholesterol in human SW-13 cells. J. Biol. Chem. 267: 19455-19463.
Sato, K. and Y. Akiba. 2002. Lipoprotein lipase mRNA expression in abdominal adipose tissue is little modified by age and nutritional state in broiler chickens. Poult. Sci. 81: 846-852.
Sato, K., K. Fukao, Y. Seki, and Y. Akiba. 2004. Expression of the chicken peroxisome proliferators-activated receptor-r gene is influenced by aging, nutrition, and agonist administration. Poult. Sci. 83: 1342-1347.
Sato, K., Y. Akiba, Y. Chida, and K. Takahashi. 1999. Lipoprotein hydrolysis and fat accumulation in chicken adipose tissues are reduced by chronic administration of lipoprotein lipase monoclonal antibodies. Poult. Sci. 78: 1286-1291.
Sato, R., W. Miyamoto, J. Inoue, T. Terada, T. Imanaka, and M. Maeda. 1999. Sterol Regulatory Element-binding Protein Negatively Regulates Microsomal Triglyceride Transfer Protein Gene Transcription. J. Biol. Chem. 274: 24714-24720.
Semenkovich, C. F. 1997. Regulation of fatty acid synthase. Prog. Lipid Res. 36: 43-53.
Semenkovich, C. F., T. Coleman and R. Goforth. 1993. Physiologic concentrations of glucose regulate fatty acid synthase activity in HepG2 cells by mediating fatty acid synthase mRNA stability. J. Biol. Chem. 268: 6961-6970.
Sessler, A. M., N. Kaur, J. P. Palta, and J. M. Ntambi. 1996. Regulation of stearoyl-CoA desaturase 1 mRNA stability by polyunsaturated fatty -acids in 3T3-L1 adipocytes. J. Biol. Chem. 271: 29854-29858.
Shaughnessy, S., E. R. Smith, S. Kodukula, J. Storch, and S. K. Fried. 2000. Adipocyte metabolism in adipocyte fatty acid binding protein knockout (aP2-/-) mice after short-term high-fat feeding. Diabetes. 49: 904-911.
Shimano, H. 2001. Sterol regulatory element-binding proteins (SREBPs): transcriptional regulators of lipid synthetic genes. Prog. Lipid Res. 40: 439-452.
Shimano, H., J. D. Horton, I Shimomura, R. E. Hammer, M. S. Brown, J. L. Goldstein. 1997. Isoform 1c of Sterol Regulatory Element Binding Protein Is Less Active Than Isoform 1a in Livers of Transgenic Mice and in Cultured Cells. J. Clin. Invest. 99: 846-854.
Shimano, H., J. D. Horton, R. E. Hammer, I. Shimomura, M. S. Brown, and J. L. Goldstein. 1996. Overproduction of cholesterol and fatty acids causes massive liver enlargement in transgenic mice expressing truncated SREBP-1a. J. Clin. Invest. 98: 1575-1584.
Souza, S. C., L. M. Vargas, M. T. Yamamoto, P. Lien, M. D. Franciosa, L. G. Moss, and A. S. Greenberg. 1998. Overexpression of perilipin A and B blocks the ability of tumor necrosis factor α to increase lipolysis in 3T3-L1 adipocytes. J. Biol. Chem. 273: 24665-24669.
Storch, J. and A. E.A. Thumser. 2000. The fatty acid transport function of fatty acid-binding proteins. Biochimica et Biophysica Act. 1486: 28-44.
Sul, H. S., M. J. Latasa, Y. Moon, and K. H. Kim. 2000. Regulation of the fatty acid synthase promoter by insulin. J. Nutr. 130: 315S-320S.
Sunde, M. L., R. W. Swick, and C. W. Kang. 1984. Protein degradation: an important consideration. Poult. Sci. 63: 2055-2061.
Tontonoz, P., E. Hu, and B. M. Spiegelman. 1994. Stimulation of adipogenesis in fibroblasts by PPARr2, a lipid-acitivated transcription factor. Cell. 79: 1147-1156.
Tuncman, G., E. Erbay, X. Hom, I. D. Vivo, H. Campos, E. B. Rimm, and G. S. Hotamisligil. 2006. A genetic variant at the fatty acid-binding protein aP2 locus reduces the risk for hypertriglyceridemia, type 2 diabetes, and cardiovascular disease. Proc. Natl. Acad. Sci. 103: 6970-6975.
Wang, Q., H. Li, N. Li, L. Leng, T. Wang, and Z. Tang. 2006. Idenfication of single nucleotide polymorphism of adipocyte fatty acid-binding protein gene and its association with fatness traits in the chicken. Poultry Sci. 85: 429-434.
Weinstock, P. H., S. Levak-Frank, L. C. Hudgins, H. Radner, J. M. Friedman, R. Zechner, and J. L. Breslow. 1997. Lipoprotein lipase controls fatty acid entry into adipose tissue, but fat mass is preserved by endogenous synthesis in mice deficient in adipose tissue lipoprotein lipase. Proc. Natl. Acad. Sci. 94: 10261-10266.
Wilson, S. B., D. W. Back, S. M. Morris, Jr. J. Swierczynski, and A. G. Goodridge. 1986. Hormonal regulation of lipogenic enzymesa in chick embryo hepatocytes in culture. Expression of the fatty acid sunthase gene is regulated at both translational and pretranslational steps. J. Biol. Chem. 261: 15179-15182.
Yamauchi, T., J. Kamon, H. Waki, Y. Terauchi, N. Kubota, K. Hara, Y. Mori, T. Ide, K. Murakami, N. Tsuboyama-Kasaoka, O. Ezaki, Y. Akanuma, O. Gavrilova, C. Vinson, M.L. Reitman, H. Kagechika, K. Shudo, M. Yoda, Y. Nakano, K. Tobe, R. Nagai, S. Kimura, M. Tomita, P. Froguel, and T. Kadowaki. 2001. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nature. 7: 941 – 946.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊