跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/05 01:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉碩祈
研究生(外文):Shuo-Chih Liu
論文名稱:以乙醯丙酮作為螯合劑及使用石墨式原子吸光法測定橄欖葉中鈹之研究
論文名稱(外文):Determination of Beryllium in Olive Leaves by GFAAS using Acetylacetone as a Chelating Agent
指導教授:郭茂松郭茂松引用關係
指導教授(外文):Mao-Sung Kuo
學位類別:碩士
校院名稱:東海大學
系所名稱:環境科學與工程學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:62
中文關鍵詞:橄欖葉石墨式原子吸光法乙醯丙酮
相關次數:
  • 被引用被引用:2
  • 點閱點閱:170
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
橄欖葉中鈹的含量可能很低,因此到目前為止有關橄欖葉中鈹的分析方法尚未看到有文獻發表,且橄欖葉標準參考樣品(如BCR CRM No.62)尚未有鈹的確認值,所以本實驗想藉由微波消化並使用乙醯丙酮作為螯合劑,然後使用石墨式原子吸光法來測定橄欖葉中鈹的含量及濃度。
首先秤取20 mg 乾燥橄欖葉樣品(BCR CRM No.62)放入7-mL鐵氟龍瓶中,分別加入濃硝酸和過氧化氫作兩階段的微波消化,將橄欖葉樣品的基質分解完全,使鈹溶於酸中。以氨水調整消化液的pH值至5.0 - 6.0,然後,加入醋酸銨緩衝溶液和乙醯丙酮(acetylacetone, acac),使生成Be(acac)2之螯合物。將此螯合物預濃縮於自製兩個串聯的 Oasis cartridge上,再各用甲醇將Be(acac)2沖洗出並定量至1.00 mL,取出20 µL注入石墨式原子吸光儀測定鈹的含量。
本研究使用標準添加法(standard addition method)測得20 mg橄欖葉樣品(BCR No. 62)中鈹的含量為0.23 ng (或濃度為11.5 ng/g),添加0.10,0.20和0.30 ng 鈹之回收率為100 - 103%,相對標準偏差(RSD, n=3)≦4.0%。本方法偵測極限(MDL, 3σ)的絕對量為0.013 ng [或濃度為0.65 ng/g],線性可達0.53 ng(或濃度為26.5 ng/g)。
The levels of beryllium (Be) in olive leaves may be very low and have not been reported neither in certified reference materials (e.g. BCR CRM No.62) nor in the literature until present. The purpose of this study is trying to develop a method for the determination of Be in olive leaves using microwave digestion, chelating with acetylacetone(acac) and then measured by GFAAS.
In this thesis, an amount (20 mg) of dried olive leaves sample (BCR CRM No. 62) was placed in a 7-mL teflon microvessel. A two-stage microwave digestion procedure using conc. HNO3 and H2O2 , respectively, was employed in order to completely decompose the sample matrix and allow the Be2+ dissolved in the acidic solution. The pH of the digested mixture was adjusted to 5.0 - 6.0 by NH3(aq). After adding ammonium acetate buffer and acac to the solution, the mixture was allowed to react at room temperature for about 1 h to form a chelate of Be(acac)2. The chelate was preconcentrated on two home-made Oasis cartridges in series, and each cartridge was eluted with methanol and adjusted to 1.00 mL. A portion (20 µL ) was introduced into a graphite cuvette and then measured by GFAAS.
The content of Be in 20 mg olive leaves was found as 0.23 ng by using the standard addition method. Good recoveries(100 – 103 %)were obtained with a relative standard deviation (RSD,n=3) < 4.0%. The method detection limit (MDL,3σ) for Be was found to be 0.013 ng [or 0.65(ng/g)]; the calibration graph was linear up to 0.53 ng [or 26.5 (ng/g)].
總 目 錄

摘要 i
總目錄 iii
表目錄 vi
圖目錄 vii

第一章 前言
一、鈹(Be)的性質與用途 1
二、鈹的污染來源與對人體的傷害 2
三、鈹的相關法令規定 3
四、研究動機 4
第二章 文獻回顧
ㄧ、橄欖葉中鈹的分析方法 5
二、選用石墨式原子吸光法的理由 5
三、石墨式原子吸收光譜儀(GFAAS)的基本原理 6
1. 中空陰極燈管 6
2. Zeeman背景校正系統 7
3. 基質修飾劑 8
4. 合適加溫程式 9
(1) 乾燥 9
(2) 灰化 9
(3) 原子化 10
(4) 清除 10
四﹑適當的前處理步驟 10
1. 微波消化 11
2. 固相萃取 12
五、選用acetylacetone(acac)作為Be(Ⅱ)之螯合劑 14
第三章 實驗部份
一﹑儀器設備及材料 17
二﹑藥品與試劑 20
三﹑玻璃器皿之清洗 23
四﹑實驗步驟 23
1. 藥品和溶液之配製 23
2. 橄欖葉樣品之來源、保存及添加已知量鈹於橄欖葉中之配製 24
3. 橄欖葉中鈹的測定方法 25
4. 直接將鈹配製在甲醇中之檢量線 30
5. 橄欖葉中鈹經Oasis cartridge之固相濃縮步驟 30
6. 石墨式原子吸光儀之設定條件 32
7. 以添加回收率作為本方法可行性之評估 33
第四章 結果與討論
ㄧ、實驗各項參數之探討 34
1. 微波消化條件之建立 34
(1)濃HNO3用量的選擇 34
(2) H2O2用量的選擇 35
(3)微波消化溫度及時間的選擇 36
(4)一階段和二階段微波效果之的比較 38
2. 固相濃縮材質、沖提體積和填充量的比較 38
3. 石墨式原子吸光儀加溫程式之探討 39
(1) 乾燥步驟的探討 39
(2) 灰化步驟的探討 40
(3) 原子化步驟的探討 41
4. 乙醯丙酮和醋酸銨緩衝溶液用量之探討 43
(1) 乙醯丙酮(acac)用量之選擇 43
(2) 醋酸銨緩衝溶液用量之選擇 44
(3) 醋酸銨緩衝溶液pH值之探討 44
二、Oasis cartidge收集效率(trapping efficiency)之測試 46
三、檢量線、方法偵測極限和回收率 47
1. 檢量線 47
2. 方法偵測極限(method detection limit, MDL) 50
3. 回收率測試 50

第五章 結論與建議 52

參考文獻 54

附錄一 直接將鈹配製在甲醇中之檢量線[數據範例] 62
附錄二 使用標準添加法所得之檢量線[數據範例] 64
附錄三 如何求得MDL之範例 66
附錄四 Olive leaves summary of certified values 67

表目錄

表2-1. 溶劑極性強度 13
表2-2. 鈹在pH值4至6的物種分布(以%表示) 16
表3-1. 使用石墨式原子吸光儀測定橄欖葉中Be2+(濃縮於
甲醇後)的加溫程式 28
表3-2. 使用石墨式原子吸光儀測定鈹之設定條件 32
表4-1. Oasis cartridge 之收集效率 46
表4-2. 直接將鈹配製於甲醇中所得之檢量線 49
表4-3. 標準添加法檢量線及橄欖葉中(BCR No. 62)鈹之含量 49
表4-4. 使用本方法測得橄欖葉中鈹的方法偵測極限(MDL)值 50
表4-5. 添加Be2+於橄欖葉參考樣品a之回收率 51








圖目錄

圖2-1. 中空陰極燈管之構造圖 7
圖2-2. 以Zeeman效應為基礎作為原子吸收光譜的背景校正系統 8
圖2-3 Oasis HLB固相萃取吸附劑的結構式 13
圖2-4. 鈹與acac螯合物之結構圖 15
圖2-5. acac形成enol form的形式 15
圖3-1. 微量樣品鐵氟龍消化瓶 25
圖3-2. 鎖瓶工具圖 26
圖3-3. 實驗流程圖 29
圖3-4 固相萃取濃縮步驟裝置圖 31
圖4-1. 濃HNO3用量對鈹吸光度之影響 35
圖4-2. H2O2用量對鈹吸光度之影響 36
圖4-3. 微波消化的溫度對鈹吸光度之影響 37
圖4-4. 微波加熱時間對鈹吸光度之影響 38
圖4-5. 灰化溫度對鈹吸光度之影響 40
圖4-6. 灰化時間對鈹吸光度之影響 41
圖4-7. 原子化溫度對鈹吸光度之影響 42
圖4-8. 原子化時間對鈹吸光度之影響 42
圖4-9. acac用量對鈹吸光度的影響 43
圖4-10. 醋酸銨緩衝溶液用量對鈹吸光度之影響 44
圖4-11. 醋酸銨緩衝溶液之pH值對鈹吸光度之影響 45
圖4-12. (a)使用直接將鈹配製於甲醇中之檢量線與(b)標準添加法之檢量線的比較 48
參考文獻

1. Merck Index, 10 th ed., p.166, 1983, Rahway, New Jersey.
2. E. Merian (editor), 1991, “ Metals and Their Compounds in the Environment Occurrence, Analysis and Biological Relevance”, pp. 775-787, VCH Publishers, New York.
3. F. A. Cotton and G. Wilkinson (editor), 1972, “Advanced Inorganic Chemistry”, 3rd ed., pp.207-208, John Wiley and Sons, New York.
4. “Beryllium”, World Health Organization(WHO)網站:http://www.who.int/water_sanitation_health/GDWQ/Chemicals/berylliumfull.htm, 1996, World Health Organization, Geneva.
5. B. E. Douglas, D. H. M. Daniel and J. J. Alexander (editor), 1994, “Concepts and Models of Inorganic Chemistry”, 3rd ed., pp.225, 718-724, John Wiley and Sons, New York.
6. J. T. Kretchik, 2000, “Beryllium”, Chem. Health Safety, 7, 40.。
7. “特定化學物質作業主管安全衛生教育訓練教材”,民國88年修正,第四版,pp. 25-26,中華民國工業安全衛生協會編印,台北。
8. M. Sitting, 1985, “Handbook of Toxic and Hazardous Chemicals and Carcinogens”, 2nd ed., pp.125-129, Noyes Publications, New Jersey.
9. J. L. Burguera, M. Burguera, C. Rondón, P. Carrero, M. R. Brunetto and Y. Petit de Peña, 2000, “Determination of beryllium in natural and waste waters using on-line flow-injection preconcentration by precipitation/dissolution for electrothermal atomic absorption spectrometry”, Talanta, 52, 27.
10. I. Nukatsuka, K. Sakai, R. Kudo and K. Ohzeki, 1995, “Studies on the adsorption of trace amounts of beryllium(II) on the surface of silica fibres from an aqueous phase for the development of a novel enrichment technique for electrothermal atomic absorption spectrometry”, Analyst, 120, 2819-2822.
11. J. R. Merrill, M. Honda and J. R. Arnold, 1960, “Methods for separation and determination of beryllium in sediments and natural waters”, Anal. Chem., 32, 1420-1426.
12. B. J. alloway and D. C. Ayres (editor), 1997, “Chemical Principles of Environmental Pollution”, 2nd ed. , pp. 49, 208, Blackie Academic and Professional, London.
13. I. A. Saleh and I. A. Doush, 1998, “Survey of trace elements in household and bottled drinking water samples collected in Riyadh, Saudi Arabia”, Sci. Total Environ., 216, 181-192.
14. T. Okutani, Y. Tsuruta and A. Sakuragawa, 1993 “Determination of a trace amount of beryllium in water samples by graphite furnace atomic absorption spectrometry after preconcentration and separation as a beryllium-acetylacetonate complex on activated carbon” Anal. Chem., 65, 1273-1276.
15. M. C. Valencia, S. Boudra and J. M. Bosque-Sendra, 1993, “Determination of trace amounts of beryllium in water by solid-phase spectrophotometry”, Analyst, 118, 1333-1336.
16. “Beryllium and compounds”, USEPA網站:http://www.epa.gov/ttn/uatw/hlthef/berylliu.html
17. Agency for Toxic Substances and Disease Registry (ATSDR), 1992, “Toxicological Profile for Beryllium (draft)”, U. S. Public Health Service, U. S. Department of Health and Human Service, Atlanta, Georgia.
18. “Current drinking water standards”, USEPA網站:http://www.epa.gov/safewater/mcl.html
19. J. Kubová, V. Nevoral and V. Streško, 1994, “Determination of beryllium trace contents in mineral waters after preconcentration on a chelating ion-exchanger”, Fresenius' J. Anal. Chem, 348, 287-290.
20. B. Frengstad, A. K. M. Skrede, D. Banks, J. R. Krog and U. Siewers, 2000, “The chemistry of Norwegian groundwaters: III. The distribution of trace elements in 476 crystalline bedrock groundwaters, as analysed by ICP-MS techiques”, Sci. Total Environ., 246, 21-40.
21. H. Vanhoe, C. Vandecasteele, B. Desmet and R. Dams, 1988, “Determination of beryllium in environmental samples by electrothermal atomic absorption spectrometry”, J. Anal. At. Spectrom., 3, 703-707.
22. National Institute for Occupational Safety and Health, 1972, Recommendations for an occupational exposure standard for beryllium, NIOSH Criteria Document TR-003-72, PB-210-806 NTIS, U. S. Department of Commerce, Washington, D. C.
23. A. W. Stange, D. E. Hilmas and F. J. Furman, 1996, “Possible health risks from low level exposure to beryllium”, Toxicology, 111, 213.
24. I. Chamberlain , K. Adams , and S. Le , 2000 , “ICP-MS determination of trace elements in fish”, At. Spectrosc. , 21 , 118-122.
25. 陳煇仁,2005,“錫蘭橄欖葉抗氧化成分之研究”,國立台灣大學森林環保暨資源學研究所碩士論文,台北.
26. 李嘉真,2001, “以石墨式原子吸光法測定頭髮中鈹之研究”, 私立東海大學環境科學系碩士論文,台中.
27. M. T. Hsu, M. H. Chen, S. R. Yang, and M. S. Kuo, 2004, “Application of Acetylacetone Chelation Solid-Phase Extraction to GFAAS Measurements of Trace Amounts of Beryllium in Marine Organisms”, Anal. Sci., 20, 1697-1700.
28. T. Stiefgl, K. Schulze, G. Toelg and H. Zorn, 1976, “Determination of beryllium in biological materials by flameless atomic-absorption spectrometry”, Anal. Chim. Acta, 87, 67-78.
29. J. L. Burguera, M. Burguera, C. Rondon and P. Carrero, 1999, “Semi-permanent lutetium modifier for determination of beryllium in urine by electrothermal atomic absorption spectrometry”, Spectrochim. Acta, Part B, 54, 1743-1753.
30. H. C. Wang, H. W. Peng and M. S. Kuo, 2001, “Determination of beryllium and selenium in urine and of selenium in human serum by graphite-furnace atomic absorption spectrophotometry”, Anal. Sci., 17, 527-532.
31. H. W. Peng and M. S. Kuo , 2000, “Determination of trace amounts of beryllium in drinking water and of beryllium vapor in air by GFAAS using acetylacetone as a chelating agent”, Anal. Sci. , 16, 157-161.
32. C. B. Rhoades, 1996, “Clean laboratory chemistry for the microwave-assisted digestion of botanical samples”, J. Anal. At. Spectrom., 11, 751-757.
33. M. Meneses, J. M. Llobet, S. Granero, M. schuhmacher and J. L. Domingo, 1999, “Monitoring metals in the vicinity of a municipal waste incinerator : temporal variation in soil and vegetation”, Sci. Total Environ., 226, 157-164.
34. W. R.Wolf, M. L. Taylor, B. M. Hughes, T. O. Tiernan and R. E. Sievers, 1972, “Determination of chromium and beryllium at the picogram level (in biological and in environment samples) by gas chromatography-mass spectrometry”, Anal. Chem., 44, 616-618.
35. W. Bashir and B. Paull, 2001, “Sensitive and selective ion chromatographic method for the determination of trace beryllium in water samples”, J. Chromatogr. A, 910, 301-309.
36. H. B. Singh, N. K. Agnihotri and V. K. Singh, 1998, “Determination of trace amounts of beryllium using derivative spectrophotometry in non-ionic micellar medium”, Talanta, 47, 1287-1296.
37. D. A. Skoog , F. J. Holler , and T. A. Nieman , 1998, “Principles of instrumental analysis”, 5th ed., Thomson Learning , Inc. , U.S.A. , pp. 210-220.
38. D. A. Skoog, D. M. West and F. J. Holler, 1996, “Fundaments of analytical chemistry”, 7th ed., pp. 611-629, Philadelphia, Saunders College Publishing.
39. 紀柏享,楊末雄,孫毓璋,1998,“微波消化之方法與應用”, Chemistry (R.O.C), 56, 269-284.
40. H. M. Kington and L. B. Jassie, 1986, “Microwave energy for acid decomposition at elevated temperatures and pressures using biological and botanical sample”, Anal. Chem., 58, 2534-3541.
41. F. E. Smith and E. A. Aresenault, 1996, “Microwave-assisted sample preparation in analytical chemistry”, Review, Talanta, 43, 1207-1268.
42. K. J. Lamble and S. J. Hill, 1998, “Microwave digestion procedures for environmental matrices”, Critical Review, Analyst, 123, 103R-133R.
43. R. N. Sah and R. O. Miller, 1992, “Spontaneous reaction for acid dissolution of biological tissues in closed vessels”, Anal. Chem., 64, 230-233.
44. S. Baldwin, M. Deaker and W. Maher, 1994, “Low-volume microwave digestion of marine biological tissues for the measurement of trace elements”, Analyst, 119, 1701-1704.
45. Water Co., 1999, “固相萃取(SPE)之應用及最新技術發展”, connections, 1, p.3.
46. D. Rood, 1995, “The use of solid phase extraction for environmantal samples”, In Quality Assurance in Environmental Monitoring:Instrumental Methods, eds. Smbramanian, G., VCH Publishers, New York.
47. J. A. Adam , E. Booth , and J. D. H. Strickland , 1952, “The determination of microgram amount of beryllium using acetylacetone”, Anal. Chim. Acta, 6, 462-471.
48. M. Takaya, 1999, “Development of an analytical method for beryllium in airbone dust by micellar electrokinetic chromatography”, J. Chromatogr. A, , 850, 363-368.
49. A. Ringbom, 1963, “Complexation in Analytical Chemistry”, Interscience Publishiers, John Wilye and Sons, New York, p.321.
50. C. C. Li and M. S. Kuo , 2002 , “Application of the acetylacetone chelation solid-phase extraction method to measurement of trace amounts of beryllium in human hair by GFAAS”, Anal. Sci., 18, 607-609.
51. Y. Hayashibe, F. Watai, Y. Enoki, K. Oguma and R. Kuroda, 1989,“Determination of trace beryllium in biological materials by a combined ion-exchange –graphite furnace atomic absorption spectrometry”, Anal. Sci., 5, 531-533.
52. L. Shoupu, Z. Mingoiao and D. Chuanyue, 1994, “Separation and determination of trace amounts of beryllium, aluminium and chromium with chromotrope 2C chelates by RP-HPLC ”, Talanta, 41, 279-282.
53. M. Ochs and S. Ivy-Ochs, 1997, “The chemical behavior of Be, Al, Fe, Ca and Mg during AMS target preparation from terrestrial silicates modeled with chemical speciation calculation”, Nucl. Instrum. Meth. Phys. Res., B, 123, 235-240.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 李興才(1996)。調整企業體質拓展印刷外銷。中華印刷科技年報,235-241。
2. 李彥甫(2002)。數位內容趨動的力量。通訊雜誌,98,89-91。
3. 66. 賴榮平,1980,「台灣地區建築通風問題之探討」,建築師雜誌,17-33頁。
4. 52. 施陽正,徐筱琪,1999,「電腦模擬在空調系統送風規劃之應用」,電機月刊,第101期,第159-167頁。
5. 李鳳梧、朱斌妤、梁定澎(2000)。科技創新育成中心經營關鍵因素之研究。科技管理學刊,5(2),239-263。
6. 胡慧嫈(1998)。焦點團體法對促進社會工作專業研究實務性之探究。社區發展季刊,81,282-292。
7. 袁建中(1996)。我國中小企業創新育成中心之規劃。規劃學報,23,85-103。
8. 許瀛鑑(1992)。21世紀台灣之印刷工業走向。工業職業教育,10(5),5-11。
9. 陳政雄(1996)。數位化印前到印刷四個階段剖析。中華印刷科技年報,3-13。
10. 賀秋白(2004)。數位三年(2004)台灣印刷與出版產業未來發展趨勢觀察。中華印刷科技年報,321-335。
11. 張中興(2001)。e世代印刷科技-CIP4/JDF的最新發展。印刷人,26(141),78-86。
12. 張光森、陳昌郎(2004)。電子化印刷企業供應鏈協同作業模式雛型之研究。中華印刷科技年報,344-359。
13. 溫肇東(1999)。科技創新的生態指標初探。科技管理學刊,4(1),39-72。