(3.238.249.17) 您好!臺灣時間:2021/04/14 13:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李錦祥
研究生(外文):Gene-Hsiang Lee
論文名稱:超分子配位聚合物自組裝與分子結構之研究
論文名稱(外文):Study on Self-assembly and Molecular Structure of Supramolecular Coordination Polymers
指導教授:王賢達王賢達引用關係
指導教授(外文):Hsin-Ta Wang
口試委員:廖義田陳登銘裘性天彭旭明
口試委員(外文):Yih-Tyan LiaoTeng-Ming ChenHsin-Tien ChiuShie-Ming Peng
口試日期:2007-06-29
學位類別:博士
校院名稱:國立臺北科技大學
系所名稱:工程科技研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:134
中文關鍵詞:超分子配位聚合物自組裝X光分子結構
外文關鍵詞:SupramoleculeCoordination polymerSelf-assemblyX-ray molecular structure.
相關次數:
  • 被引用被引用:1
  • 點閱點閱:130
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來超分子配位聚合物(supermolecular coordination polymer)的設計、自組裝合成與應用被受矚目,設計不同幾何形狀與角度的有機配基和金屬離子的來做自組裝,將可組裝出多種不同結構且具有某些特定功能的超分子配位聚合物。本論文研究選擇的金屬離子有Co+2、Ni+2、Cu+2、Zn+2和Cd+2,有機配基則選擇自行設計開發新的配基或是文獻已報導的配基兩大類。

在本文中我們自行設計開發五種新的pyrazine-modulated N,N′-bis(α-pyridyl)- 2,6-diaminopyridine有機配基 [(N-Pyrazin-2-yl)(N′-pyridin-2-yl)pyridine-2,6-diamine (H2pzpypy)、N,N′-Bis(pyridin-2-yl)pyrazine-2,6-diamine (H2pypypz)、(N-Pyrazin- 2-yl)-(N′-pyridin-2-yl)pyrazine-2,6-diamine (H2pzpypz)、N,N′-Bis(pyrazin-2-yl)- pyridine-2,6-diamine (H2pzpzpy)和N,N′-Bis(pyrazin-2-yl)pyrazine-2,6-diamine (H2pzpzpz)],和過渡金屬Cu+2和Ni+2自組裝,經由X光單晶繞射分子結構分析,獲得數個一維、二維、三維超分子配位聚合物,並研究討論TGA熱重分析和磁性性質。

另外也合成一種新穎含三唑基團並具雙配位性質的配基,trans-4,4''-azo-1,2,4- triazole (atr),此配基是藉由偶氮連接兩端的三唑基團形成一共平面結構,兩端的三唑基團都具有配位性質,因此成為合成多維配位聚合物的理想配基。我們藉由不同比例的反應條件或者混搭其他配基方式,順利合成出1-D、2-D 以及3-D的Co(II)配位聚合物。

已報導的配基我們選擇1,4-bis(3-pyridyl)2,3-diaza-1,3-butadiene (3-bpd),成功獲得三個配位聚合物,其一為有著相同構築單元確有著不同構形的一維[ZnCl2(3-bpd)]n配位聚合物,經由X光單晶繞射分子結構分析顯示,一為維螺旋鏈狀結構,另一為方波形鏈狀結構,而兩個結構都以C−H•••Cl分子間氫鍵將鏈狀分子相連接,形成三維的配位聚合物;另一配位聚合物則是[Ni2(NO3)4(3-bpd)3]n•nEtOH,所有3-bpd當架橋配基,連接相隣Ni原子形成三維結構,在這三維結構中產生大小約6.7x8.5Å沿著a軸的一維微孔洞,而乙醇分子被吸附在此孔洞內。

另一已報導的配基我們選擇N,N′-Bis(4-pyridylmethyl)oxalamide (4py-ox),自組裝出兩個配位聚合物,其一為[CoCl2(4py-ox)]n•0.5nH2O配位聚合物,為一維鋸齒鏈狀的結構,而兩條一維鋸齒鏈以前後交錯的方式堆疊,形成一大小約為8.6 × 8.6 Å2正方形的通道,水分子以氫鍵與4py-ox鍵結存在具通道內。另一為 [Cd(NO3)2(4py-ox)1.5]n二維配位聚合物,但此二維配位聚合物在立體結構上以相互交錯的方式來堆疊,所以並沒有得到很好的孔洞結構。
In recent years, the design, self-assembly, and application of supramolecular coordination polymers have been extensively studied. The organic ligands with different geometry shape and angle have been designed and synthesized. The reactions of these organic ligands with the metallic ions form the corresponding functional coordination polymers. In this dissertation, the metallic ions were chosen from Co+2, Ni+2, Cu+2, Zn+2 and Cd+2. Two types of the organic ligands were selected for self-assembly. One type of ligand was based on literature synthesized, the other type of ligand was designed and synthesized.

We synthesized five new pyrazine-modulated ligands, [(N-Pyrazin-2-yl)(N''-pyridin-2-yl)pyridine-2,6-diamine (H2pzpypy), N,N''-bis(pyridin- 2-yl)pyrazine-2,6-diamine (H2pypypz), (N-Pyrazin-2-yl)-(N''-pyridin-2-yl)pyrazine- 2,6-diamine (H2pzpypz), N,N''–bis(pyrazin-2-yl)-pyridine-2,6-diamine (H2pzpzpy) and N,N''–bis(pyrazin-2-yl)pyrazine-2,6-diamine (H2pzpzpz). By coordinating with metal ions Cu+2 and Ni+2, several 1-D, 2-D and 3-D supramolecular coordination polymers determined by X-ray single crystal diffraction have been obtained.

Another new ligand, trans-4,4''-azo-1,2,4-triazole (atr) was also synthesized for the construction of coordination polymers. The ligand is a planar molecule with two triazoles linked by an azo group. It could be served as a multi-dentate ligand or a good linkage ligand. A series of Co(II) polymeric compounds with 1-D, 2-D and 3-D frameworks have been successfully synthesized and characterized structurally.

The ligand, 1,4-bis(3-pyridyl)-2,3-diaza-1,3-butadiene (3-bpd), has also been used for the synthesis of three novel coordination polymers. Two novel coordination polymers have the same chemical composition, [ZnCl2(3-bpd)]n and they show different structural conformations with one forming a helical chain and the other a square-wave chain. The intermolecular C−H•••Cl hydrogen bonds in both structures play important roles in the formation of 3-D framework. The coordination polymer [Ni2(NO3)4(3-bpd)3]n•nEtOH, with all the bridging ligands in a bis-monodentate mode connecting to the Ni(II) ions, formed a 3-D metal-organic polymeric framework that shows a 1-D microporous channel with dimensions of ca. 6.7 x 8.5 Å2 along the a-axis. The EtOH guest molecules are intercalated into these channels.

The reaction of N,N''-bis(4-pyridylmethyl)oxalamide (4py-ox) with Co+2 and Cd+2 formed two novel supramolecular coordination compounds, [CoCl2(4py-ox)]n•0.5nH2O, and [Cd(NO3)2(4py-ox)1.5]n, respectively. The structure of [CoCl2(4py-ox)]n•0.5nH2O features a 1-D zigzag chain. Two interwoven chains create a cavity of ca 8.6 x 8.6 Å2, which produces a 3-D channel and water molecules are held in the channel by hydrogen bonds. The structure of [Cd(NO3)2(4py-ox)1.5]n shows a 2-D sheet polymeric framework and the neighboring sheets are interlaced, and the 3-D structure of this compound is microporous.
中文摘要 i
英文摘要 iii
誌謝 v
目錄 vi
表目錄 viii
圖目錄 x
第一章 緒論 1
1.1前言 1
1.2超分子化學 2
1.3自組裝 2
1.4金屬−有機配位聚合物 3
1.5晶體工程 5
1.6研究動機 11
第二章 實驗設計與研究方法 12
2.1前言 12
2.2構築單元 12
2.3超分子配位聚合物的構築 15
2.4自組裝合成方法 15
2.5晶體成長 16
2.6晶體結構分析 16
2.7磁性量測分析 20
第三章 Cu+2、Ni+2與oligopyrazinediamine自組裝與分子結構分析 24
3.1前言 24
3.2實驗部份 25
3.3結果與討論 36
3.4結論 66
第四章 Zn+2、Ni+2與3-bpd自組裝與分子結構分析 67
4.1前言 67
4.2實驗部份 68
4.3結果與討論 71
4.4結論 76
第五章 Co+2、Cd+2與4py-ox自組裝與分子結構分析 77
5.1前言 77
5.2實驗部份 77
5.3結果與討論 80
5.4結論 85
第六章 Co+2與atr自組裝與分子結構分析 86
6.1前言 86
6.2實驗部份 86
6.3結果與討論 92
6.4結論 101
第七章 總結 102
7.1結論 102
7.2未來的展望與研究方向 103

參考文獻 104

附錄

A 晶體資料檔(CIF file, Crystallographic Information File) 109
B 本論文發表於SCI期刊文章 110
第一篇SCI期刊文章 111
第二篇SCI期刊文章 119
第三篇SCI期刊文章 121
第四篇SCI期刊文章 125
1.D. M. Eigler and E. K. Schweizer, Nature 1990, 344, 524.
2.Jean-Marie Lehn, Supramolecular Chemistry — Scope and Perspectives Molecules:Supermolecules, Molecular Devices, Nobel Lecture, 1987.
3.G. M. Whitesides, J. P. Mathias, C. T. Seto, Science 1991, 254, 1312.
4.C. J. Pedersen, Angew. Chem., Int. Ed. Engl. 1988, 27, 1021.
5.J.-M. Lehn, Angew. Chem., Int. Ed. Engl. 1988, 27, 90.
6.D. J. Cram, Angew. Chem., Int. Ed. Engl. 1988, 27, 1009.
7.B. J. Holliday and C. A. Mirkin, Angew. Chem., Int. Ed. 2001, 40, 2022.
8.M. J. Zaworotko, Chem. Comm. 2001, 1.
9.B. Moulton, M. J. Zaworotko, Chem. Rev. 2001, 101, 1629.
10. N. Takeda, K. Umemoto, K. Yamaguchi, M. Fujita, Nature, 1999, 398, 794.
11. K. B. Shiu, H. C. Lee, G. H. Lee, B. T. Ko, Y. Wang, C. C. Lin, Angew. Chem., Int. Ed. Engl. 2003, 42, 2999.
12. W. W. Ellis, M. Schmitz, Arif, A. A. Stang, P. J. Inorg. Chem. 2000, 39, 2547
13. M. C. Hong, W. P. Su, R. Cao, M. Fujita, J. X. Lu, Chem. Eur. J. 2000, 6, 427.
14. J. Cernak, K. A. Abboud, Acta Crystallogr. 2000, C56, 783.
15. E. Colacio, M. Ghazi, R. Kivekas, M. Klinga, F. Lloret, J. M. Moreno, Inorg. Chem. 2000, 39, 2770.
16. G. C. Guo, Q. M. Wang, T. C. W. Mak, Inorg. Chem. Commun. 2000, 3, 313.
17. P. Losier, M. J. Zaworotko, Angew. Chem., Int. Ed. Engl. 1996, 35, 2779.
18. A. J. Blake, N. R. Champness, P. Hubberstey, W. S. Li, M. A. Withersby, M. Schroder, Coord. Chem. Rev. 1999, 183, 117.
19. K. S. Min, M. P. Suh, J. Solid State Chem. 2000, 152, 183.
20. R. Masse, J. F. Nicoud, M. Bagieu-Beucher and C. Bourgogne, Chem.Phys. 1999, 245, 365.
21. M. A. Withersby, A. J. Blake, N. R. Champness, P. A. Cooke, P.Hubberstey and M. Schroder, New J. Chem. 1999, 23, 573.
22. Y. B. Dong, R. C. Layland, N. G. Pschirer, M. D. Smith, U. H. F. Bunzand H. C. Zur Loye, Chem. Mater. 1999, 11, 1413.
23. L. Carlucci, G. Ciani and D. M. Proserpio, New J. Chem. 1998, 22, 1319.
24. Y. B. Dong, M. D. Smith, R. C. Layland, H. C. Zur Loye, J. Chem.Soc., Dalton Trans. 2000, 775.
25. C. V. K. Sharma and R. D. Rogers, Cryst. Eng. 1998, 1, 19.
26. L. R. Macgillivray, R. H. Groeneman and J. L. Atwood, J. Am. Chem. Soc. 1998, 120, 2676.
27. D. Hagrman, R. P. Hammond, R. Haushalter and J. Zubieta, Chem.Mater. 1998, 10, 2091.
28. J. Lu, T. Paliwala, S. C. Lim, C. Yu, T. Y. Niu and A. J. Jacobson, Inorg. Chem. 1997, 36, 923.
29. K. N. Power, T. L. Hennigar and M. J. Zaworotko, New J. Chem. 1998, 22, 177.
30. A. Rujiwatra, C. J. Kepert and M. J. Rosseinsky, Chem. Commun. 1999, 2307.
31. F. H. Herbstein, M. Kapon, G. M. Reisner, J. Inclusion Phenom. 1987, 5, 211.
32. F. H. Herbstein, Top. Curr. Chem. 1987, 140, 107.
33. S. Subramanian and M. J. Zaworotko, Angew. Chem., Int. Ed. Engl. 1995, 34, 2127.
34. H. Li, M. Eddaoudi, M. O’Keeffe and O. M. Yaghi, Nature 1999, 402,276.
35. S. Noro, S. Kitagawa, M. Kondo and K. Seki, Angew. Chem., Int. Ed. 2000, 39, 2081.
36. K. Biradha, K. V. Domasevitch, C. Hogg, B. Moulton, K. N. Power, M. J. Zaworotko, Cryst. Eng. 1999, 2, 37.
37.K. Biradha, A. Mondal, B. Moulton, M. J. Zaworotko, J. Chem. Soc., Dalton Trans. 2000, 3837
38.B. Kahr, Crystal Growth & Design 2004, 4, 3.
39.C. Janiak, Dalton Trans. 2003, 2781.
40.B. Moulton and M. J. Zaworotk, Chem. Rev. 2001, 101, 1629.
41.S. Feng and R. Xu, Acc. Chem. Res. 2001, 34, 239.
42.H. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O’Keeffe and O. M. Yaghi, Science, 2002, 295, 469.
43.N. L. Rosi and O. M. Yaghi, Science 2003, 300, 1127.
44.J. Pamela, D. H. Hagrman, Z. Jon, Angew. Chem., Int. Ed. Engl. 1999, 38, 2638.
45.S. M. F. Lo, S. S. Y. Chui, L. Y. Shek, Z. Lin, X. X. Zhang, G.-h. Wen, I. D. Williams, J. Am. Chem. Soc. 2000, 122, 6293.
46.B. Moulton, M. Zaworotko, J. Chem. Rev. 2001, 101, 1629.
47.S. I. Noro, R. Kitaura, M. Kondo, S. Kitagawa, T. Ishii, H. Matsuzaka, M. Yamashita, J. Am. Chem. Soc. 2002, 124, 2568.
48.E. J. Cussen, J. B. Claridge, M. J. Rosseinsky, C. J. Kepert, J. Am. Chem. Soc. 2002, 124, 9574.
49.L. Pan, H. M. Liu, X. G. Lei, X. Y. Huang, D. H. Olson, N. J.Turro, J. Li, Angew. Chem., Int. Ed. Engl. 2003, 42, 542.
50.B. Rather, M. J. Zaworotko, Chem. Commun. 2003, 830.
51.K. Biradha, Y. Hongo, M. Fujita, Angew. Chem., Int. Ed. 2000, 39, 3843.
52.Y. B. Dong, M. D. Smith, R. C. Layland, H. C. zur Loye, Chem. Mater. 2000, 12, 1156.
53.O. M. Yaghi, H. Li, J. Am. Chem. Soc. 1996, 118, 295.
54.O. M. Yaghi, H. Li, C. Davis, D. Richardson, T. L. Groy, Acc. Chem. Res. 1998, 31, 474.
55.B. Kessanli, W. Lin, Coord. Chem. Rev. 2003, 246, 305
56.C. D. Wu, A. Hu, L. Zhang, W. Lin, J. Am. Chem. Soc. 2005, 127, 8940.
57.G. J. Halder, C. J. Kepert, B. Moubaraki, K. S. Murray, J. D.Cashion, Science 2002, 298, 1762.
58.S. Leininger, B. Olenyuk, P. J. Stang, Chem. Rev. 2000, 100, 853.
59.G. H. Stout and L. H. Jensen, X-ray Structure Determination 2nd edition, John Wiley & Sons, New York, 1989.
60.M. F. C. Ladd and R. A. Palmer, Structure Determination by X-ray Crystallography 2nd, Plenum Press, New York, 1985.
61.E. Gabe, N. Kato, P. Main,王瑜,彭旭明,張石麟,劉陵崗等,「晶體繞射計算研習會論文集」,晶體繞射計算研習會,中央研究院化學研究所,台北市南港,1985.
62. SHELXTL. A set of programs for crystal structure determination from single- crystal diffraction data. ; Bruker AXS Inc., Madison, Wisconsin, USA, 2000.
63.劉怡弘、王瑜,單晶結構分析,科儀新知,第22卷第二期,第7-13頁,2000。
64.R. S. Drago, Physical Method for Chemists 2nd, Saunders College Publishing, 1992, 469.
65.O. Kahn, Molecular Magnetism, VCH Publishers, Inc., 1993.
66.S. J. Shieh, C. C. Chou, G. H. Lee, C. C. Wang, S. M. Peng, Angew. Chem. Int. Ed. 1997, 36, 56.
67.C. C. Wang, W. C. Lo, C. C. Chou, G. H. Lee, J. M. Chen, S. M. Peng, Inorg. Chem. 1998, 37, 4059.
68.C. C. Wang, W. C. Lo, C. C. Chou, G. H. Lee, J. M. Chen, S. M. Peng Inorg.Chem. 1998, 37, 4059.
69.H. C. Chang, J. T. Li, C. C. Wang, T. W. Lin, H. C. Lee, G. H. Lee, S. M. Peng Eur. J. Inorg. Chem. 1999, 1243.
70.C. Y. Yeh, C. H. Chou, K. C. Pan, C. C. Wang, G. H. Lee, Y. O. Su, S. M. Peng J. Chem. Soc., Dalton Trans. 2002, 2670.
71.C. Y. Yeh, Y. L. Chiang, G. H. Lee, S. M. Peng, Inorg. Chem. 2002, 41, 4096.
72.S. Y. Lin, I-Wen P. Chen, C. H. Chen, M. H. Hsieh, C. Y. Yeh, T. W. Lin, Y. H. Chen, S. M. Peng, J. Phys. Chem. B 2004, 108, 959.
73.F. A. Cotton, L. M. Daniels, T. Lu, C. A. Murillo, X. Wang J. Chem. Soc., Dalton Trans. 1999, 517.
74.F. A. Cotton, L. M. Daniels, C. A. Murillo, X. Wang Chem. Commun. 1999, 2461.
75.J. F. Berry, F. A. Cotton, C. S. Fewox, T. Lu, C. A. Murillo, X. Wang, Dalton Trans. 2004, 2297.
76.M. H. Yang, T. W. Lin, C. C. Chou, H. C. Lee, H. C. Chang, G. H. Lee, M. K. Leung, S.M. Peng, Chem. Commun. 1997, 2279.
77.K. Y. Ho, W. Y. Yu, K. K. Cheung, C. M. Che, J .Chem. Soc., Dalton Trans. 1999, 1581.
78.L. Huang, S. H. Tang, X. N. Fang, X. R. Zeng, Acta Crystallogr. Sect. E: Struct. Rep. Online 2004, 60, m1963.
79.Y. Xie, X. Wang, M. Zhang, K. Wei, Q. Liu, S. Peng, Appl. Organomet. Chem. 2005, 19, 175.
80.K. Wei, Y.Xie, X. Wang, M. Zhang, Q. Liu, S. Peng, Appl .Organomet. Chem. 2005, 19, 178.
81.X. N. Fang, X. F. Li, X. R. Zeng, Acta Crystallogr., Sect. E: Struct. Rep. Online 2005, 61, m1123.
82.Y. Q. Liu, X. R. Zeng, H. M. Kuang, H. L. Chen, Q. Y. Luo, Acta Crystallogr., Sect. E: Struct. Rep. Online 2006, 62, m878.
83. Z. Otwinowski and W. Minor, DENZO-smn, Program for cell refinement and data reduction, Meth. Enzymol. 1997, 276, 307.
84. R. H. Blessing, SORTAV, an empirical correction for absorption anisotropy. Acta. Cryst. Sect. A. 1995, 51, 33.
85. SAINT, Program for cell refinement and data reduction; Bruker AXS Inc., Madison, Wisconsin, USA, 2005.
86. G. M. Sheldrick, SADABS, Program for absorption correction; University of Göttingen, Göttingen, Germany, 2003.
87. G. M. Sheldrick, Phase annealing in SHELXS-97: direct methods for larger structures. Acta Cryst. 1990, A46, 467.
88. G. M. Sheldrick, SHELXS-97, Program for the refinement of crystal structure; University of Göttingen, Göttingen, Germany, 1997.
89. C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler, J. van de Streek, J. Appl. Cryst. 2006, 39, 453.
90. T. L. Nguyen, A. Scott, A. Dinkelmeyer, F. W. Fowler, J. W. Lauher, New J. Chem. 1998, 22, 129.
91. B. C. Tzeng, B. S. Chen, S. Y. Lee, W. H. Liu, G. H. Lee, S. M. Peng, New J. Chem. 2005, 29, 1254.
92. B. C. Tzeng, H. T. Yeh, Y. L. Wu, J. H. Kuo, G. H. Lee, S. M. Peng, Inorg.Chem. 2006, 45, 591.
93. A. L. Spek, J. Appl. Cryst. 2003, 36, 7.
94. 劉啟村,鐵二價之偶氮三唑自旋交叉錯合物合成與鑑定,碩士論文,台灣大學化學研究所,2005。
95. J. Lu, T. Paliwala, S.C. Lim, C. Yu, T. Niu, A. J. Jacobson, Inorg.Chem. 1997, 36, 923.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔