跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/06 03:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃駿傑
研究生(外文):Chun-Chueh Huang
論文名稱:應用粒子群最佳化求解線性二階規劃
論文名稱(外文):Application of particle swarm optimization to solve linear bi-level programming.
指導教授:郭人介郭人介引用關係
口試委員:吳建文田方治駱至中
口試日期:2007-06-12
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:工業工程與管理研究所
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:94
中文關鍵詞:線性二階規劃粒子群最佳化演算法基因演算法
外文關鍵詞:bi-level programmingparticle swarm optimizationgenetic algorithm
相關次數:
  • 被引用被引用:4
  • 點閱點閱:192
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
企業在進行決策規劃時,會先由高階決策者訂定整體的方向和目標,再將任務細分給次階的決策人員施行並達成次目標,這種階層式的決策問題可以經由多階的數學規劃來進行模擬。其中高階決策者和次階決策者各自控自不同的變因,卻相互受到牽制,而高階決策者對變因的控制也可視為對次階目標的一種試探性行為。
由於粒子群最佳化演算法具有模仿生物群體依賴相似特性之群體智慧(Swarm Intelligence)的概念方法,及粒子經驗交換及傳承世代之演算模式,其利用粒子族群具有探測(Exploitation)與開發(Exploration)的特色,可用於問題空間中搜尋全域的最佳解。本研究將運用粒子群最佳化演算快速收斂的特性來找出最低成本解,並發展出適用於求解線性和線性二階規劃的改良式粒子群最佳化,並將演算結果和過去使用基因演算法進行討論分析。結果顯示傳統粒子群和本研究所改良的粒子群演算法,再求解線性二階規劃的能力上皆有優異的表現,而其中又以改良式粒子群演算法的求解結果較為突出。
In decisions making for an organization, the upper-level decision maker has to determine the operation direction and goals first, and then forward them to the subordinate level as the base of decision making. Basically, subordinate-level manager has to achieve his/her goal without conflicting to high-level decision. This kind of hierarchical characteristics can be modeled and programmed by using mathematical programming.
Particle Swarm Optimization (PSO) can mimic cooperation between individuals in the same group by using swarm intelligence and exchange experiences from generation to generation. To exploit and explore the hyperspace global optimal with PSO has many advantages, especially converges fast. This research attempts to develop a noval PSO named vector-controlled particle swarm optimization (VCPSO) to solve bi-level programming more accurately with comparison to genetic algorithm (GA) . The experimental results show that the proposed VCPSO is able to converge faster and has better accuracy than conventional PSO and GA.
摘 要 I
ABSTRACT II
誌 謝 III
目錄 V
表目錄 VIII
圖目錄 X
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3 研究範圍 2
1.4 論文架構 2
第二章 文獻探討 4
2.1史達勃克賽局模式 4
2.2多階規劃 Multi-level programming: 5
2.2.1 線性二階規劃問題之定義 7
2.2.2 線性二階規劃之幾何特性 9
2.2.3 線性二階規劃解之特性 9
2.2.4 線性二階規劃之求解方法 10
2.2.5 其它相關之問題模式 14
2.2.5.1 三階規劃(three-level programming) 14
2.2.5.2 二階混合整數線性規劃 15
2.2.5.3 多個低階決策單位的線性二階規劃 16
2.3 粒子群最佳化(Particle Swarm Optimization) 18
2.3.1 粒子群最佳化之原理與發展 18
2.3.2 粒子群最佳化演算法 20
2.3.3 粒子群最佳化之應用 22
第三章 研究方法 25
3.1 研究架構 25
3.2 粒子群最佳化應用於線性規劃 27
3.2.1 粒子群最佳化求解線性規劃 27
3.2.2 改良粒子群最佳化求解線性規劃 29
3.3 粒子群最佳化應用於線性二階規劃 34
3.3.1 粒子群最佳化求解二階線規劃 34
3.3.2改良粒子群最佳化求解線性二階規劃 36
3.4 小結 38
第四章 實驗分析與驗證 39
4.1 實驗例子簡介 39
4.2 演算法評估 40
4.3粒子群最佳化求解線性規劃數值驗證 41
4.3.1 粒子群最佳化與模糊類神經網路求解比較 41
4.3.2 粒子群最佳化求解線性規劃的參數敏感度分析 44
4.4粒子群最佳化求解線性二階規劃數值驗證 52
4.4.1 粒子群最佳化與其他方法之比較 52
4.4.2粒子群最佳化求解線性二階規劃的參數敏感度分析 59
4.5 資料驗證小結 69
第五章 結論與建議 70
5.1 結論 70
5.2 研究貢獻 72
5.3 未來研究建議 72
參考文獻 73
附錄A 實驗結果 81
[1]卓佳慧,結合退貨與獎勵機制下之最佳訂購定價政策,碩士論文,國立中央大學工管所,中壢,2004。
[2]廖慧凱,道路災害搶修與緊急物流配送問題之探討,碩士論文,國立中央大學土木工程所,中壢,2006。
[3]邱宇婷,應用粒子群最佳化演算法於關聯法則資料探勘之研究,國立台北科技大學工管所,碩士論文,台北,2006。
[4]鄭國村,整合粒子群最佳化與模擬退火法求解彈性零工式生產排程問題之研究,國立台北科技大學工管所,碩士論文,台北,2006。
[5]張家榮,建構數學模式來探討資訊分享對供應鏈影響,國立清華大學工業工程所,新竹,2005。
[6]郭人介譯,供應鏈與物流管理─全球案例•本土觀點,台北:美商麥格羅•希爾,pp.4-25,2005.
[7]葉思緯,應用粒子群最佳化演算法於多目標存貨分類之研究,碩士論文,元智大學工業工程與管理學系,內壢,2004。
[8]葉麗雯,供應商產能有限及價格折扣下多產品多供應商最佳化採購決策,碩士論文,元智大學工業工程與管理學系,內壢,2002。
[9]蕭翰琦,以類神經網路求解模糊多階層規劃問題,碩士論文,義守大學工業管理學系,高雄,2001。
[10]Anandalingam G.,“A mathematical programming model of decentralized Multi-level systems,”Computers and Operations and Research Vol.39,No.11,pp.1021-1033, 1988.
[11] Bard J.F.,“Practical bilevel optimization: algorithms and applications,” Kluwer Academic Publishers, Boston, 1998.
[12]Bard J. F. and Moore J.T.,“A branch and bound algorithm for the bi-level programming problem,”SIAM Journal of Scientific and Statistical Computing, Vol. 11, No. 2, pp.281-292, 1990.
[13]Ben-Ayed O.,“Bi-level linear programming,”Computers and Operation Research, Vol. 20, pp.485-501, 1993.
[14]Bialas W.F. and Karwan M.H.,“On two-level optimization,”IEEE
Transaction Automatic Control, Vol.27, pp.211-214, 1982.
[15]Bialas W. F. and Karwan, M. H.,“Two-level linear programming,”Management Science, Vol. 30, No. 8, pp. 1004-1020, 1984.
[16]Calvete H.I. and Gale’ C.,“A note on bi-level fractional linear programming problem,” European Journal of Operational Research, Vol. 152, pp. 296-299, 2004.
[17]Cassidy R.G., Kirby M. J. L., and Raike W. M.,“Efficient distribution of resources through three levels of government,”Management Science, Vol.17, No.8, April, 1971.
[18]Chen C.I. and Jose B. Cruz, JR,“Staclelberg solution fo Two-Person
Games with biased information patterns,”IEEE transactions on automatic
control, Vol. AC-17, No.6, December, 1972.
[19]Colson B., Marcotte P. ,and Savard G.,“Bi-level programming: a survey,” A Quarterly Journal of Operation Research, Vol. 3, pp. 87-107, 2005.
[20]Dantzing G.B. and Wolfe P.,“Decomposition principle for linear programs,”Operations Research, Vol.8, No.1, pp.101-111, 1960.
[21]Eberhart R.C. and Kennedy J., “Particle swarm optimization,” Proceedings of the IEEE International Conference on Neural Networks, Perth, Australia, pp.1942-1948, 1995.
[22]Eberhart R.C. and Kennedy J., “A new optimizer using particle swarm theory,” Proceedings of the 6th International Symposium on Micro Machine and Human Science, Nagoya Japan, pp.39-43, 1995.
[23]Eberhart R.C. and Shi Y., “Particle swarm optimization: Developments,
applications and resources,” Proceedings of the IEEE Congress on Evolutionary Computation, pp.81-86, 2001.
[24]Ellram, Lisa M., “A Managerial Guideline for the Development
and Implementation of Purchasing Partnerships,” International Journal of Purchasing and Material Management, Summer, pp. 2-8, 1991.
[25]Feng H.M.,“Self-generation RBFNs using evolutional PSO learning,” Neruocomputing, Vol.70, pp.241-251, 2006.
[26]Ferrari P.,“A Three-level Mathematical Programming Model of Road Pricing,”Journal of Global Optimization. Vol.28, pp.297-304, 2004.
[27]Frangioni A.,“On a new class of bi-level programming problems and its use for reformulating mixed integer problems,”European Journal of Operational Research Theory and Methodology, Vol.82, pp. 615-646, 1995.
[28]Gao Z., Wu J. ,and S H.,“Solution algorithm for the bi-level discrete network design problem,”Transportation Science, Vol.33, pp.381-390, 2005.
[29]Gumus Z. H. and Floudas C. A.,“Global optimization of mix-integer
bi-level programming problems,”Computational Management, 2003.
[30]Guoyan Y., Zhen H., Chaoan L. ,and Yanming S., ”An optimization design system with hybrid intelligence,” Intelligent Control and Automation Fifth World Congress, Vol. 3, pp.2790 - 2794, 2004.
[31]He Q. and Wang L.,“An efficient particle swarm optimization for
constrained engineering design problems,”Artificial intelligence,Vol.2007,
pp.89-99, 2006.
[32]Hejazi S.R., MemarianA. i, Jahanshahloo G., and Sepehri M.M. “Linear bi-level programming solution by genetic algorithm,”Computers and Operations Research, Vol. 29, pp.1913-1925, 2002.
[33]Hu X., “PSO Tutorial,” Particle Swarm Optimization,
<http://www.swarmintelligence.org/index.php>, 2003.
[34]Jin Y.X., Cheng H.Z., Yan J.Y.,and Li Zhang,“New discrete method for particle swarm optimization and its application in transmission network expansion planning,”Electric power systems research, Vol.77, pp.207-233, 2007.
[35]Jose B. Cruz, JR.,“Leader-Follower strategies for multilevel systems,” IEEE Transactions on automatic control, Vol. AC-23, No.2, April, 1978.
[36]Luce R. and Raiffa H.,“Game and Decisions,”New York: Wiley,1957.
[37]Lu Jie, Shi C., and Zhang G.,“On bi-level multi-follower decision making: General framework and solutions,”Information Sciences,Vol.176, pp.1607-1627, 2006.
[38]Markland E., Robert V.K., Shawnee, and Davis A.R.,“Operations Management : Concepts in Manufacturing and Services,”West Publishing
Co., 1995
[39]McCormack K.,“B2B Collaboration: What is it? ,”DRK Research and Consulting LLC, 2003.
[40]Mersha A.G. and Dempe S.,“Linear bilevel programming with upper level constraints depending on the lower level solution,”Applied Mathematics and Computation, 2006.
[41]Moore J.T. and Bard J.F.,“The mixed integer linear bilevel programming problem,”Operations Research, 1990, Vol.38, No.5, pp.911-921.
[42]Piplani R. and Viswanathan S.,“A model for evaluating
supplier-owned inventory strategy,”International Journal of Production Economics. Vol.81-82,pp.565-571, 2003.
[43]Ruefli T.W.,“A generalized goal decomposition model,”
Management Science, Vol.17, No.8, April, 1971.
[44]Ryu J.H., Dua V., and Pistilopoulos E.N.,“A bi-level programming framework for enterprise-wide process networks under uncertainty,
”Computers and Chemical Engineering, Vol. 28, pp.1121-1129, 2004.
[45]Sakawa M. and Nishizaki I.,“Interactive fuzzy programming for two-level nonconvex programming problems with fuzzy parameters through genetic algorithms,”Fuzzy sets and Systems, Vol. 127, pp.185-197, 2002.
[46]Shelokar P.S., Siarry P., Jayaraman V.K., Kulkarni B.D.,“Particle swarm and ant colony algorithms hybridized for improved continuous optimization,” Applied Mathematic and Computation, 2006.
[47]Shi Y. and Eberhart R.C., “A modified particle swarm optimizer,” Proceedings of the IEEE International Conference on Evolutionary Computation, Piscataway, pp.69-73, 1998.
[48]Shi Y. and Eberhart R.C., “Parameter selection in particle swarm optimization,” Evolutionary Programming VII: Proceedings of the Seventh Annual Conference on Evolutionary Programming, pp.591-600, 1998.
[49]Shi Y. and Eberhart R.C., “Comparing inertia weights and constriction factors in particle swarm optimization,” Proceedings of the IEEE Congress on Evolutionary Computation, pp.84-88, 2000.
[50]Shih H.S., Lai Y.J., and Lee E.S.,“Fuzzy approach for multi-level
programming problems.,”Computers and Operation Researches, Vol. 23, No.1, pp.73-91, 1996.
[51]Shih H.S., Wen U.P., Lee E. S. , Lan K.M., Hsiao H.C., “A Neural Network Approach to Multiobjective and Multilevel Programming Problems., computers mathematic with applications,Vol.48, pp.95-108 , 2004.
[52]Shi C., Lu J., and Zhang G.,“An extended Kuhn-Tucker approach for linear bi-level programming,”Applied Mathematics and Computation,
Vol.162, pp..51-63, 2005.
[53]S. Fan S.K., Zahara Erwise,“A hybrid simplex search and particle
swarm optimization for unconstrained optimization,”European Journal of operational research, 2006.
[54]Simchi-levi D., Kaminsky P., and Simchi-levi E., Designing and Managing the Supply chain,McGraw-Hill Higner Education.pp.131-137, 2000.
[55]Song M.P. and Gu G.C., “Research on particle swarm optimization: a review,” Proceedings of the IEEE International Conference on Machine Learning and Cybernetics, pp.2236-2241, 2004.
[56]Stephan Dempe, Vyacheslav Kalashnilov, and Hugo Terashima “Application of discrete bi-level programming to some applied problems,”proceedings of the fourth Mexican international conference on computer Science, 2003.
[57]Toelle Richard A. and Tersine Richard J.,“Excess Inventory: Financial Asser Or Operation Liability?,”Production and Inventory Management Journal, Vol.30(4), pp.32-35, Fourth Quarter, 1989.
[58]Vicente L. N., Savarg G., and Judive J. J.,“Descent approaches for
quadratic bi-level programming,”Journal of Optimization Theory and Applications, Vol.81, pp.379-399, 1994.
[59]Vicente L.N., Savarg G., and Judice J. J.,“The discrete linear bi-level programming problem,”Journal of Optimization Theory and Applications, Vol.89, pp.597-614, 1996.
[60]Wang K.P., Huang L., Zhou C.G. ,and Pang W., “Particle swarm optimization for traveling salesman problem,” Proceedings of the Second International
Conference on Machine Learning and Cybernetics, pp.1583-1585, 2003.
[61]Wang G.M., Wang X.J., Wan Z.P.,and Chen Y.L., “Genetic Algorithms for Solving Linear Bilevel Programming”, Proceedings of the IEEE Sixth international Conference on Parallel and Distributed Computing , 2005.
[62]Wen U.P. and Bialas W.F.,“The hybrid algorithm for solving the three-level linear programming problem,”Computers & Operations Research, Vol.13, No.4, pp.367-377, 1986.
[63]Wen U.P. and Shih H.S.,“Algorithms for solving integer two-level linear programming problem,”Computers and Operational Research, Vol. 17, No. 2, pp. 133-142, 1991.
[64]Wen U.P. and Hsu S.T.,“Linear Bi-level programming problems ─ A review,”Journal of Operations Research Society,Vol.42, No.2, pp.125-133, 1991.
[65]Wen U.P. and Huang A.D.,“A simple Tabu Search method to solve the
mixed-integer problem bi-level programming problem.”European Journal of Operational Research, Vol.88, pp.563-571, 1996.
[66]W.T. Weng and U.P. Wen.,“A primal-dual interior point algorithm
for solving bi-level programming problem.,”Asia-Pacific Journal of
Operational Research, Vol.17, pp.213-231, 2000.
[67]Zhu D.L., Xu Q., and Lin Z.,“A homotopy method for solving bi-level programming problem.,”Nonlinear Analysis, Vol.57, pp.917-928, 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top