跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/07 06:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:潘冠廷
研究生(外文):Guan-Ting Pan
論文名稱:應用化學水浴法製備AgIn5S8薄膜與其光電性質研究
論文名稱(外文):The study of photoelectrochemical performance for AgIn5S8 thin film using chemical bath deposition
指導教授:楊重光楊重光引用關係
指導教授(外文):Thomas C. K. Yan
口試委員:鄭光煒黃昭銘
口試委員(外文):Kong-Wei ChengChao-Ming Huang
口試日期:2007-06-29
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:85
中文關鍵詞:光觸媒薄膜光電化學反應半導體
外文關鍵詞:PhotoelectrodesX-ay diffractionOptical propertiesPhotocurrent density
相關次數:
  • 被引用被引用:0
  • 點閱點閱:343
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究採用經濟、可成長大面積薄膜、操作簡單之化學水浴沉積法( Chemical Bath Deposition, CBD ),成長Ag-In-S三系列之半導體光觸媒薄膜於導電玻璃上,改變操作參數(鍍膜次數、藥劑濃度等),以獲得有效提昇AgIn5S8半導體薄膜光電流效率之操作條件。
在XRD分析中,薄膜結構會隨著硫乙醯銨濃度與鍍膜次數增加逐漸成為典型的立方型AgIn5S8。由SEM可知,反應次數與乙醯銨濃度增加,薄膜上的顆粒也會隨之越大,且薄膜厚度也會越厚。此外,由EDS元素成份分析中可得知薄膜也會因鍍膜次數增加使得S/Ag比率增加。以紫外光-可見光譜儀作薄膜吸收度測試,得薄膜之能隙值為1.77 eV;薄膜穿透度測試顯示,膜厚的增加會造成薄膜之穿透率降低。本實驗利用穿透率之數據經計算式計算後所得薄膜之折射率與消光係數,會隨著鍍膜次數與硫乙醯銨濃度之增加而下降,且由(αhυ)1/n對hυ之作圖,得薄膜能隙約1.71~1.87 eV。
電性量測方面,當薄膜厚度增加時,薄膜之電阻率會隨之上升,從霍爾效應量測中得載子濃度為4.05×1014~ 6.51×1014 cm-3,其趨勢與肖特基圖譜、光電流密度量測結果趨勢一致。薄膜的平帶電位為-0.293~-0.403 V (v.s Ag/AgCl),導帶位置為-0.517~-0.618V (v.s Ag/AgCl),價帶位置為+1.092~+1.228V (v.s Ag/AgCl)。在量子效率量測中,薄膜之量子效率可達2.26 %。
The AgIn5S8 polycrystalline films were grown on indium-tin-oxide coated glass substrates by using chemical bath deposition. New procedures for the growth of AgIn5S8 films are presented. The solutions containing silver nitrate, indium nitrate, triethanolamine, ammonium nitrate, and thioacetamide in acidic solution were used for the growth of AgIn5S8 film electrodes. The influences of various deposition parameters on structural, optical, electrical performances of films have been investigated. The X-ray diffraction patterns of the samples demonstrates the presence of polycrystalline structures of AgIn5S8 phase in these films and show AgIn5S8 phase is the major crystal structure. The thickness, band gaps and carrier densities of these samples determined from transmittance spectra and electrochemical analysis are in the range of 650~1150 nm, 1.87~ 1.71 eV, and 4.05×1014~ 6.51×1014 cm-3, respectively. The flat band potentials of these samples are located between -0.293~ -0.403 V (v.sAg/AgCl) versus normal hydrogen electrode with the Mott- Schottky measurements. The conduction bands and valance bands of films determined from flat band potentials are in the range of -0.517~ -0.618 V (v.sAg/AgCl), and +1.092~ +1.228 V (v.sAg/AgCl). The maximum photocurrent density of samples prepared in this study with external potential kept at 3.5 V was found to be 6.0 mA/cm2 under the illumination with white light intensity kept at 100 mW/cm2.
中文摘要 i
英文摘要 ii
目錄 iii
表目錄 v
圖目錄 vi
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 2
第二章 理論與文獻回顧 3
2.1半導體鍍膜技術 3
2.2化學水浴法 3
2.3化學水浴法鍍膜沉積理論回顧 5
2.3.1 溶解度之概念與離子之產物 5
2.3.2 溶液中沉澱物之形成 7
2.4 化學水浴法鍍膜技術發展 8
2.4.1 金屬硫化物薄膜 8
2.4.1.1 硫化鎘(CdS)薄膜 8
2.4.1.2 硫化鋅(ZnS)薄膜 8
2.4.1.3 硫化汞(HgS)薄膜 9
2.4.1.4 硫化錳(MnS)薄膜 9
2.4.1.5 硫化銀(Ag2S)薄膜 9
2.4.1.6 硫化銦(In2S3)薄膜 9
2.4.2 金屬硒化物薄膜 9
2.4.2.1 硒化鎘(CdSe)薄膜 9
2.4.2.2 硒化鋅(ZnSe)薄膜 10
2.4.3 金屬氧化物薄膜 10
2.4.3.1 氧化鋅(ZnO)薄膜 10
2.4.3.2 氧化鎘(CdO)薄膜 10
2.4.4 複合金屬硫化物薄膜 10
第三章 實驗方法與薄膜分析 28
3.1實驗儀器設備 28
3.1.1薄膜製備 28
3.1.2反應系統 28
3.1.3分析儀器 29
3.2實驗藥品與器材 29
3.3研究架構 30
3.4光觸媒薄膜製作 31
3.5晶型結構分析 34
3.6 SEM表面型態分析 38
3.7光學性質分析 48
3.7.1薄膜吸收度測試 48
3.7.2薄膜穿透度測試 50
3.7.3薄膜膜厚與能隙值 52
第四章 薄膜電性量測 62
4.1四點探針量測 62
4.2霍爾效應量測 62
4.3 Mott- Schottky 63
4.4光電流密度量測與量子效率量測 70
4.4.1電流密度之量測 70
4.4.2量子效率 73
第五章 結論與未來工作 75
5.1結論 75
5.2未來工作 76
第六章 參考文獻 77
[1] A. Kudo, “Photocatalyst Materials for Water Splitting,” Catalysis Surveys from Asia 7(1) (2003) 31- 38.
[2] 黃茂業,“鍍膜設備技術與市場”,新興機械產業技術簡訊,28期,93年7月15日。
[3] C.D. Lokhande, A. Ennaoui, P.S. Patil, M. Giersig, K. Diesner, M. Muller, and H. Tributsch,“ Chemical bath deposition of indium sulphide thin films: preparation and characterization” Thin Solid Films 340 (1999) 18- 23.
[4] A. Antony, K.V. Murali, R. Manoj, and M.K. Jayaraj, “The effect of the pH value on the growth and properties of chemical-bath-deposited ZnS thin films,”Mater. Chem. Phy. 90(1) (2005) 106– 110.
[5] S. Litch, “Aqueous Solubilities, Solubility Products and Standard Oxidation-Reduction Potentials of the Metal Sulfides,” J. Electrochem. Soc. 135(12) (1988) 2971- 2975.
[6] L.G. Sillen and A.F. Martell (Eds.), Stability Constant of Metal Ion Complexes, Special Publication, No. 17, The Chemical Society, London, 1964.
[7] L.G. Sillen and A.F. Martell (Eds.), Stability Constant of Metal Ion Complexes, Special Publication, Suppl. No. 1, Special Publication No. 25, The Chemical Society London, 1971.
[8] C.V. Suryanarayana, “Solid electroyte systems-recent ternds,”Bull. Electrochem. 2(1) (1986) 49- 52.
[9] N.R. Pavaskar, C.A. Menzes, and A.P.B. Sinha, “Photoconductive CdS films by a chemical bath deposition process,”J. Electrochem. Soc. 124(5) (1977) 743- 748.
[10] B.B. Bargale, A.G. Shikalgar, and S.H. Pawar, “Photothermoelectric effect in CdS:Na films deposited from a chemical bath,” Thin Solar Films 62(2) (1979) 215- 222.
[11] I.Kaur, D.K. Pandya, and K.L. Copra, “Growth kinetics and polymorphism of chemically deposited CdS films,” J. Electrochem. Soc. 127(4) (1980) 943- 948.
[12] C.D. Lokhande and S.H. Pawar, “Studies on photoelectrochemical storage cells formed with CdS:Cu electrode,” Solid State Commum. 43(8) (1982) 623- 626.
[13] C.D. Lokhande and S.H. Pawar, “Optical and transport properties of chemical bath deposited CdS: Al film,”Solid State Commum. 44(8) (1983) 1137- 1139.
[14] C.D. Lokhande and S.H. Pawar, “ Effect on aluminum doping on the properties of pec cells formed with CdS:Al films,” Mater. Res. Bull. 18 (1983) 1295- 1301.
[15] A.Mondal, T.K. Chaudhari, and P. Pramanik, “Deposition of cadmium chalcogenide thin films by a solution growth technique using triethanolamine as a complexing agent,” Solar Energy Mater. 7(4) (1983) 431- 438.
[16] R.C. Bhardwaj, C.M. Jadhav, and M.M. Taqui Khan, “Deposition and performance of CdS thin films on various substrates for photochemical cells,” Solar Cells 12 (1984) 371- 278.
[17] P.K. Nair, M.T.S. Nair, J. Campos, and L.E. Sansores, “A critical discussion of the very high photoconductivity in chemically deposited cadmium sulfide thin films - Implications for solar cell technology,” Solar Cells 22 (1987) 211- 227.
[18] S.N. Sahu and S. Chandra, “Chemical-bath-deposited CdS and CdS:Li films and their use in photoelectrochemical solar cells,”Solar Cells 22 (1987) 163- 173.
[19] P.K. Nair and M.T.S. Nair, J. Campos, “Photocurrent respose in chemically deposited CdS thin films,”Solar Energy Mater. 15(6) (1987) 441- 452.
[20] J. M. Doña and J. Herrero, “Chemical bath deposition of CdS thin films: electrochemical in situ kinetic studies,” J. Electrochem. Soc. 139(10) (1992) 2810- 2814.
[21] G. Hodes, I. D. J. Howell, and L. M. Peter, “Nanocrystalline ohotoelectrochemical cells,” J. Electrochem. Soc. 139 (1992) 3136- 3140.
[22] D. Lincot and R.O. Borges, “Chemical Bath deposition of cadmium sulfide thin films. In situ growth and structural studies by combined quartz crystal microbalance and electrochemical impedance techniques,”J. Electrochem. Soc. 139(7) (1992) 1880- 1889.
[23] G. Hodes, “Size-quantized nanocrystalline semiconductor films,” Israel J. Chem. 33(1) (1993) 95- 106.
[24] P.J. Sebastian, J. Campos, and P.K. Nair, “Effect of post-deposition treatments on morphology, structure and opto-electronic properties of chemically deposited CdS thin films,” Thin Solid Films 227(2) (1993) 190- 195.
[25] I.I. Yu, T. Isobe and M. Serma, “Preparation and properties of CdS thin films comprising nano-particles by a solution growth technique,” Mater. Res. Bull. 30(8) (1995) 975- 980.
[26] H. Hu and P.K. Nair, “Chemical deposition of photosensitive CdS thin films on polyester foils,” J. Crystal Growth 152(3) (1995) 150- 157.
[27] P.J. George, A. Sánchez, P.K. Nair, and L. Huang, “Properties of chemically deposited CdS thin films converted to n-type by indium diffusion,” J. Crystal Growth 158(1-2) (1996) 53- 60.
[28] S.S. Kale, U.S. Jadhav, and C.D. Lokhande, “Preparation and characterization of chemically deposited CdS films,”Ind. Pure and Appl. Phys. 34(5) (1996) 324- 327.
[29] S.S. Kale, U.S Jadhav, and C.D. Lokhande, “PEC cells based on nanocrystalline CdS films,”Bull. Electrochem. 12(9) (1996) 540- 543.
[30] H.N. Cui and S.Q. Xi, “The fabrication of dipped CdS and sputtered ITO thin films for photovoltaic solar cells,”Thin Solid Films 288(1-2) (1996) 325- 329.
[31] P.J. George, A. Sanchez-Juarez, and P.K. Nair, “Modification of electrical, optical and crystalline properties of chemically deposited CdS films by thermal diffusion of indium and tin,” Semicond. Sci. Technol. 11 (1996) 1090- 1095.
[32] K.K. Nanda and S.N. Sahu, “Study of CdS nanocrystallites by AFM and raman scattering spectroscopy,” Appl. Surf. Sci. 119(1-2) (1997) 50- 54.
[33] I. O. Oladegi and L. Chow, “Optimization of chemical bath deposited cadmium sulfide thin films,” J. Electrochem. Soc. 144(7) (1997) 2342- 2346.
[34] K.K. Nanda, S.N. Sarangu, S. Mohanty, and S.N. Sahu, “Optical properties of CdS nanocrystalline films prepared by a precipitation technique,” Thin Solid Films 322(1-2) (1998) 21- 27.
[35] O. Vigil a,1, Y. Rodrıguez, O. Zelaya-Angel, C. Vàzquez-Lòpez , A. Morales-Acevedo, and J.G. Vàzquez-Luna, “Properties of CdS thin films chemically deposited in the presence of a magnetic field,” Thin solid Films 322(1-2) (1998) 329- 333.
[36] K.K. Nanda, S.N. Sarangi, and S.N. Shu, “Measurement of surface roughness by atomic force microscopy and utherford backscattering spectrometry of CdS nanocrystalline films,” Appl. Surf. Sci. 133(4) (1998) 293- 297.
[37] M.A. Martínez, C. Guillén, and J.Herrero, “Morphological and structural studies of CBD-CdS thin films by microscopy and diffraction techniques,”Appl. Surf. Sci. 136(1-2) (1998) 8- 16.
[38] M. Ristova and M. Ristov, “Silver-doped CdS films for PV application,” Solar Energy Mater. Solar Cell 53(1-2) (1998) 95- 102.
[39] M.T.S. Nair, P.K. Nair, and J. Campos, “Effect of bath temperature on the optoelectronic characteristics of chemically deposited CdS thin films,”Thin Solid Films 161 (1998) 21- 23.
[40] C.D. Lokhande, “Chemical deposition of cds thin films from an acidic bath,”Mater. Chem. Phys. 26(3-4) (1990) 405- 409.
[41] F. Goto, M. Ichimura, and E. Erai,“ A New Technique of Compound Semiconductor Deposition from an Aqueous Solution by Photochemical Reactions,” Jpn. J. Appl. Phys. 36(9A/B) (1997) L1146- L1149.
[42] S. Biswas, P. Pramanik, and P.K. Basu, “A solution growth technique for the preparation of zinc sulfide thin film,”Mater. Lett. 44(2) (1986) 81- 84.
[43] P.K. Nair and M.T.S. Nair, “Chemically deposited ZnS thin films: application as substrate for chemically deposited Bi2S3, CuxS and PbS thin films,”Semicond. Sci. Technol. 7(2) (1992) 239- 244.
[44] J.M. Doña and J. Herrero, “Process and film characterization of chemical-bath-deposited ZnS thin films,” J. Electrochem. Soc. 141(1) (1994) 205- 210.
[45] M. Froment and D. Lincot, “Phase formation processes in solution at the atomic level: metal chalcogenide semiconductors,” Electrochim. Acta 40(10) (1995) 1293- 1303.
[46] I.C. Ndukwe, “Solution growth, characterization and applications of zinc sulphide thin films,” Solar Energy Mater. Solar Cells 40(2) (1996) 123- 131.
[47] B. Mokili, Y. Charreire, R. Cortes, and D. Lincot, “Extended X-ray absorption fine structure studies of zinc hydroxo-sulphide thin films chemically deposited from aqueous solution,”Thin Solid Films 288(1-2) (1996) 21- 28.
[48] R. Zhai, S. Wang, H. Xu, H. Wang, and H. Yan, “Rapid formation of CdS, ZnS thin films by microwave-assisted chemical bath deposition,” Materials Letters 59(12) (2005) 1497- 1501.
[49] M. Perakh and H. Ginsberg, “Deposition of thin films of HgS from colloidal solutions,” Thin Solid films 52(2) (1978) 195- 202.
[50] K.M. Gadave, P.P. Kumbhar, and C.D. Lokhande, “Chemical deposition of HgS films from acidic bath,” Ind. J. Pure Appl. Phys. 30(6) (1992) 299- 301.
[51] K.M. Gadave and C.D. Lokhande,“Photoelectrochemical (PEC) properties of chemically deposited HgS films,” Ind. J. Pure Appl. Phys. 31(12) (1993) 942- 944.
[52] S.S. Kale and C.D. Lokhande,“Preparation and characterization of HgS films by chemical deposition,” Mater. Chem. Phys. 59(3) (1999) 242- 246.
[53] P. Pramanik, M.A. Akhter, and P.K. Basu, “A solution growth technique for the deposition of manganese sulphide thin film,” Thin Solid Films 158(2) (1988) 271- 275.
[54] C.D. Lokhande, A. Ennaoui, P.S. Patil, M. Giersig, M. Muller, K. Diesner, and H. Tributsch, “Process and characterisation of chemical bath deposited manganese sulphide (MnS) thin films ,” Thin Solid Films 330(2) (1998) 70- 75.
[55] S.S. Dhumure and C.D. Lokhande, “Solution growth of silver sulphide thin films ,”Mater. Chem. Phys. 27(3) (1991) 321- 324.
[56] S.S. Dhumure and C.D. Lokhande, “Chemical deposition of Ag2S films from acidic bath,” Mater. Chem. Phys. 28(1) (1991) 141- 144.
[57] S.S. Dhumuer and C.D. Lohande, “Preparation and characterization of chemically deposited Ag2S films ,” Solar Energy Mater. Solar Cells 28(2) (1992) 159- 166.
[58] H. Meherzi, Maghraoui, M. Dacharoui, S. Belgacem, K.D. Butre, R. Kunst, P. Cowache, and D. Lincot, “Structural, optical and transport properties of Ag2S films deposited chemically from aqueous solution,” Thin Solid Films 288 (1-2) (1996) 217- 223.
[59] S.S. Dhumure and C.D. Lohande, “Studies on the preparation and characterization of chemically deposited Ag2S films from an acidic bath ,”Thin Solid Films 240(1-2) (1994) 1- 6.
[60] D. Hariskos, M. Ruckh, and U. Ruble, T. Walter, H.W. Schock, J. Hedstrom, L. Stolt, “A novel cadmium free buffer layer for Cu(In,Ga)Se2 based solar cells ,”Solar Energy Mater. Solar Cells 41/42 (1996) 345- 353.
[61] R. Bayón, C. Guillén, M. A. Martínez, M. T. Gutiérrez, and J. Herrero, “Preparation of Indium Hydroxy Sulfide Inx(OH)ySz Thin Films by Chemical Bath Deposition,” J. Electrochem. Soc. 145(8) (1998) 2775- 2779.
[62] C.D. Lokhande, A. Ennaoui, P.S. Patil, M. Giersig, K. Diesner, M. Muller, and H. Tributsh, “Chemical bath deposition of indium sulphide thin films: preparation and characterization,” Thin Solid Films 340(1-2) (1999) 18- 23.
[63] R.C. Kainthala, D.K. Pandya, and K.L. Chopra, “Solution Growth of CdSe and PbSe Films, ” J. Electrochem. Soc. 127(2) (1980) 277- 283.
[64] R.A. Boudreau and R.D. Rauh, “Chemical Bath Deposition of Thin Film Cadmium Selenide for Photoelectrochemical Cells,” J. Electrochem. Soc. 130(2) (1983) 513- 516.
[65] G. Hodes, A. Albu-Yaron, F. Mostisuke, and D. Mostisuke, “Three-dimensional quantum-size effect in chemically deposited cadmium selenide films,” Phys. Rev. B 36(8) (1987) 4215- 4221.
[66] F. Cerdeira, I. Torriani, P. Motisuke, V. Lemos, and F. Decker, “Optical and structural properties of polycrystalline CdSe deposited on titanium substrates,”Appl. Phys. A 46 (2) (1988) 107- 112.
[67] P.P. Kumbhar, S.S. Dhumure, and C.D. Lokhande, “Junction fabrication between n-CdSe and polyaniline films,”Ind. J. Pure Appl. Phys. 30(9) (1992) 466- 467.
[68] J. M. Gracia-Jiménez, G. Martínez-Montes, and R. Silva-González, “Photoluminescence of Chemical Bath Deposited CdSe Films,”J. Electrochem. Soc. 139(7) (1992) 2048- 2052.
[69] M.T.S. Nair and P.K. Nair, “Enhancement of photosensitivity in chemically deposited CdSe thin films by air annealing,” J. Appl. Phys. 74(3) (1993) 1879- 1884.
[70] S.S. Dhumure and C.D. Lokhande, “Studies on photoelectrochemical storage cells formed with chemically deposited CdSe and Ag2S electrodes,” Solar Energy Mater. Solar Cells. 29(2) (1993) 183- 194.
[71] V.M. Garcia, M.T.S. Nair, P.K. Nair, and R.A. Zingaro, “Preparation of highly photosensitive CdSe thin films by a chemical bath deposition technique,” Semicond. Sci. Technol. 11(3) (1996) 427- 432.
[72] K.R. Brajesh, H.D. Bist, R.S. Katiyar, M.T.S. Nair, P.K. Nair, and A. Monnivanna, “Simultaneous observation of strong and weak quantum confinement effect in chemically deposited CdSe thin films: A spectro-structural study,”J. Appl. Phys. 82(3) (1997) 1310- 1319.
[73] L. Kronik, N. Ashkenasy, M. Leiboritch, E. Fefer, and Y. Shapira, “Surface States and Photovoltaic Effects in CdSe Quantum Dot Films,”J. Electrochem. Soc. 145(5) (1998) 1748- 1755.
[74] I. Kaur, D.K. Pandya, and K.L. Chopra, “Growth Kinetics and Polymorphism of Chemically Deposited CdS Films,”J. Electrochem. Soc. 127(4) (1980) 943- 948.
[75] P. Pramanik and S. Biswas, “Deposition of Zinc Selenide Thin Films by Solution Growth Technique,”J. Electrochem. Soc. 133(2) (1986) 350- 350.
[76] G.N. Chaudhari, S. Menorama, and V.J. Rao, “Deposition of ZnS0.056Se0.944 thin films on GaAs(110) substrates. A new chemical growth technique,”Thin Solid Films 208(2) (1992) 243- 246.
[77] C.A. Estrade, P.K. Nair, M.T.S. Nair, P.A. Zingaro, and E.A. Meyers, “Chemical Bath Deposition of ZnSe and CuSe Thin Films Using N,N-Dimethylselenourea,” J. Electrochem. Soc. 141(3) (1994) 802- 806.
[78] C.A. Estrade, R.A. Zingaro, E.A. Meyers, P.K. Nair, and M.T.S. Nair,“Modification of chemically deposited ZnSe thin films by ion exchange reaction with copper ions in solution,” Thin Solid Films 247(2) (1994) 208- 212.
[79] C.D. Lokhande, P.S. Patil, A. Ennaoui, and H. Tributsch, “Chemical bath ZnSe thin films: Deposition and characterisation,” Appl. Surf. Sci. 123/124 (1998) 294- 297.
[80] R.L. Call, N.K. Jaber, K. Seshan, and J.R. Whyte, “Structural and electronic properties of three aqueous-deposited films - CdS, CdO, ZnO, for semiconductor and photovoltaic applications,” Solar Energy Mater. 2(3) (1980) 373- 380.
[81] Y.M. Gao, P. Wu, J. Baglio, K. Dwight, and A. Wold, “Growth and characterization of zinc sulfide films by conversion of zinc oxide films with H2S ,” Mater. Res. Bull. 24(10) (1989) 1215- 1221.
[82] M. Izaki and T. Omi, “Transparent Zinc Oxide Films Chemically Prepared from Aqueous Solution,” J. Electrochem. Soc. 144(1) (1997) L3- L5.
[83] R.L. Call, N.K. Jaber, K. Seshan, and J.R. Whyte, “Structural and electronic properties of three aqueous-deposited films - CdS, CdO, ZnO, for semiconductor and photovoltaic applications,” Solar Energy Mater. 2(3) (1980) 373- 380.
[84] G.K. Padam and S.U.M. Rao, “Preparation and characterization of chemically deposited CuInS2 thin films,”Solar Energy Mater. 13(4) (1986) 297- 305.
[85] G.N. Chaudhari, S. Menorama, and V.J. Rao, “Deposition of ZnS0.056Se0.944 thin films on GaAs(110) substrates: A new chemical growth technique,”Thin Solid Films 208(2) (1992) 243- 246.
[86] G.N. Chaudhari, S.N. Sardesai, S.D. Sathe, and V.J. Rao, “Structural properties of ZnSxSe1−x thin films on GaAs (1 1 0) substrate,” J. Mater. Sci. 27(17) (1992) 4647- 4650.
[87] R.S. Mane and C.D. Lokhande, “Studies on chemically deposited cadmium sulphoselenide (CdSSe) films,”Thin Solid Films 304(1-2) (1997) 56- 60.
[88] PDF-ICDD-Powder Diffraction File, (Set 1-49), International Center for Diffraction Data, 12 Campus Boulevard, Newtown Square, PA, USA, 1999.
[89] M. Kostoglou, N. Andritsos, and A. J. Karabelas, “Incipient CdS thin film formation.,” J. Colloid Interf. Sci. 263 (2003) 177- 189.
[90] D. Tembjurbar and J.P. Hirde, “Structural, optical and electrical properties of spray pyrolytically deposited films of copper indium diselenide,”Thin Solid Films 215(1) (1992) 65- 70.
[91] F. Abou- Elfotouh, D.J. Dunlavy and T.J. Coutts, “Intrinsic defect states in CuInSe2 single crystals,”Solar Cells 27 (1989) 237- 246.
[92] S. Aglian, D. Mangalaraj, Sa. K. Narayandass, and G. Mohan Rao, “Effect of thickness and substrate temperature on structureand optical band gap of hot wall-deposited CuInSe2 polycrystalline thin films,” Phys. B. 365 (2005) 93- 101.
[93] A. R. Forouhi, and I. Bloomer, “Optical dispersion relations for amorphous semiconductors and amorphous dielectrics,” Phys. Rev. B 34 (1986) 7018- 7026.
[94] M. Nenkov and T. Pencheva, “Calculation of thin-film optical constants by transmittance-spectra fitting,” J. Opt. Soc. Am. A 15 (1998) 1852- 1857.
[95] J. Tauc , In Amorphous and Liquid Semiconductors; Plenum Press: London and New York, 1974.
[96] 張宗文,〝Sb 摻入對薄膜成長與特性之影響〞,國立中山大學材料科學研究所碩士論文(1994)。
[97] A. F. Qasrawi and N. M. Gasanly, “Crystal data, electrical resistivity, and Hall mobility of n-type AgIn5S8 single crystals,”Cryst. Res. Technol. 36(4-5) (2001) 457- 464.
[98] K. Darowicki, S. Krakowiak, and P.Ślepski, “Selection of measurement frequency in Mott–Schottky analysis of passive layer on nickel,” Electrochim Acta. 51(11) (2006) 2204- 2208.
[99] P. Knauth and Y. Massiani, “Mott-Schottky analysis of polycrystalline copper(I) bromide in aqueous electrolytes,” J. Electroanal Chem. 442(1) (1998) 229- 234.
[100] Y.F. Cheng and J.L. Luo, “Electronic structure and pitting susceptibility of passive film on carbon steel,” Electrochim Acta. 44(17) (1999) 2947- 2957.
[101] G.B. Streetman and S. Banerjee, fifth edition of Solid state electronic devices, 1980.
[102] A.F. Qasrawi and N.M. Gasanly, “Crystal data, electrical resistivity, and hall mobility of n- type AgIn5S8 single crystals,”Cryst. Res. Technol. 36(4-5) (2001) 457- 464.
[103] C. Kittel, Seventh edition of Introduction to Solid State Physics, 1986.
[104] R.J. Keyes﹐ Optical and Infrared Detectors﹐Springer-Verlag﹐Berlin﹐Heidelberg﹐New York﹐1977.
[105] S.U.M. Khan and J. Akikusha, “Photoelectrochemical splitting of water at nanocrystalline n-Fe2O3 thin-film electrodes,” J. Phys. Chem. B 103(34) (1999) 7184- 7189.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊