(3.235.25.169) 您好!臺灣時間:2021/04/20 17:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:賴正耀
研究生(外文):Cheng-Yao Lai
論文名稱:1,8-萘二胺與苯胺共聚複合膜吸收銅離子與導電率關係
論文名稱(外文):Relation between electric conductivity and the concentration of copper ions absorbed by Poly(aniline/1,8-diaminonaphthalene) composite films
指導教授:段葉芳段葉芳引用關係
口試委員:林岩錫楊勝俊
口試日期:2007-06-29
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:71
中文關鍵詞:苯胺18萘二胺循環伏安法四點探針微分脈衝伏安法
外文關鍵詞:Aniline18-diaminonaphthaleneCyclic voltammetryFour-point probeDifferential pulse voltammetry
相關次數:
  • 被引用被引用:0
  • 點閱點閱:147
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要研究將苯胺和1,8-萘二胺在硫酸銅溶液下,利用電化學合成含銅的苯胺和1,8-萘二胺共聚複合膜,最後得到複合膜導電率與銅離子濃度趨勢圖。在實驗的第一部份,利用循環伏安法得到PAN、P(1,8-DAN)和P(AN-1,8-DAN)三個薄膜的CV圖,且將三個不同之薄膜利用四點探針測量電阻抗算出導電率,得導電率大小順序為PAN>P(AN-1,8-DAN)>P(1,8-DAN)。
在實驗的第二部份,將1,8-萘二胺和苯胺配製成1:1、1:5、1:10和1:20四種不同比例之薄膜,比較導電率和CV圖發現,1:10和1:20兩種比例之薄膜,導電率比其他兩種為佳,然後再利用這兩種比例各混合5種不同濃度硫酸銅溶液,使用循環伏安法製膜,之後用微分脈衝伏安法(DPV)確認薄膜上銅離子濃度的差別。
最後發現銅離子濃度範圍0~1000 ppm下,根據1,8-萘二胺和苯胺比例為1:20所得到銅離子含量與導電率之關係,判斷未知溶液複合膜之導電率推算成銅離子濃度,是最恰當的。
The dissertation describes the studies of the relation between electric conductivity of composite films and the concentration of copper ions. The results come from the films which are made of aniline and 1,8-DAN in Copper(II) Sulfate solution by cyclic voltammetry. With four-point probe, using three different films to measure electric resistance and figure out conductivity, we know the order is PAN>P(AN-1,8-DAN)>P(1,8-DAN).In the second part, we have four kinds of films in different proportions made of 1,8 - DAN and aniline. The proportions are 1:1, 1:5, 1:10, and 1:20. Comparing conductivity and Cyclic voltammogram, the conductivity of the films which come from the two proportions(1:10, 1:20) is better than the other two. With the two proportions, we made the films in five different Copper(II) Sulfate solution. Then make sure the difference of concentration of copper ions in the films with differential pulse voltammetry (DPV).Finally, based on the range of concentration of copper ions which is between 0 to 1000 ppm, and according to the proportion of 1,8-DAN and aniline which is 1:10, we get the relation of conductivity and the concentration of copper ions. It is the most appropriate to figure out the concentration of copper ions with the composite films and conductivity in unknown solution.
中文摘要...............................................i
英文摘要...............................................ii
誌謝...................................................iii
目錄...................................................iv
表目錄.................................................vi
圖目錄.................................................vii
第一章 緒論............................................1
1.1 前言...............................................1
1.2 導電性高分子簡介...................................2
1.2.1 導電性高分子分類.................................4
1.2.2 導電性高分子摻雜.................................6
1.2.3 導電性高分子導電機制.............................8
1.2.4 導電性高分子應用.................................12
1.3 目的...............................................13
第二章 文獻回顧........................................14
2.1 聚苯胺.............................................14
2.1.1 聚苯胺的結構.....................................16
2.1.2 聚苯胺的合成.....................................18
2.2 聚1,8-萘二胺.......................................19
2.3 電化學反應.........................................21
2.4 伏安法.............................................24
2.4.1 循環伏安法.......................................25
2.4.2 微分脈衝伏安法...................................26
第三章 實驗部份........................................28
3.1 實驗藥品...........................................28
3.2 實驗器材...........................................29
3.3 實驗流程...........................................30
3.3.1 聚苯胺...........................................30
3.3.2 聚1,8-萘二胺 .....................................31
3.3.3 聚苯胺-1,8-萘二胺................................32
3.3.4 不同苯胺比例之聚苯胺-1,8-萘二胺..................33
3.3.5 含銅之複合膜 (苯胺:1,8-萘二胺=1:10)...........34
3.3.6 含銅之複合膜 (苯胺:1,8-萘二胺=1:20)...........35
3.4 實驗儀器及測量方法.................................36
3.5 實驗合成方法.......................................38
3.5.1 藥品前處理.......................................38
3.5.2 聚苯胺...........................................38
3.5.3 聚1,8-萘二胺 .....................................38
3.5.4 聚苯胺-1,8-萘二胺................................39
3.5.5 不同苯胺比例之聚苯胺-1,8-萘二胺..................39
3.5.6 含銅之複合膜 (苯胺:1,8-萘二胺=1:10)...........40
3.5.7 含銅之複合膜 (苯胺:1,8-萘二胺=1:20)...........40
第四章 結果與討論......................................42
4.1 聚苯胺、聚1,8-萘二胺和聚苯胺-1,8-萘二胺............42
4.1.1 聚苯胺的合成 .....................................42
4.1.2 聚1,8-萘二胺的合成...............................44
4.1.3 聚苯胺-1,8-萘二胺的合成..........................46
4.1.4 聚苯胺、聚1,8-萘二胺和聚苯胺-1,8-萘二胺導電率比較48
4.2 不同苯胺比例之聚苯胺-1,8-萘二胺複合膜比較..........49
4.3 含銅之複合膜.......................................53
4.3.1 含銅之複合膜 (苯胺:1,8-萘二胺=1:10)...........53
4.3.2 含銅之複合膜 (苯胺:1,8-萘二胺=1:20)...........60
4.3.3 兩種比例含銅複合膜之導電率觀察及探討.............67
第五章 結論............................................68
參考文獻...............................................69
[1] H. Shirakawa, Kagaku Ni, Miserarete,2001.
[2] T. A. Skotheim, R. Elsenbaumer, and J. R. Reynolds, Handbook of Conducting Polymer,1998,29.
[3] A. G. MacDiarmid, Current Applied Physics , 2001,269-279.
[4] 張立德,奈米材料,台北:五南圖書出版公司,2002,119-120。
[5] 何國賢、謝達華,導電性塑膠簡介及應用,塑膠資訊,1997,28-35。
[6] 蔡信行主編,化工製程及材料,臺北:新文京出版社,2005,416-437。
[7] Jaipal Reddy, M., Siva Kumar, J., Subba Rao, U.V., Chu, Peter P., “Structural and ionic conductivity of PEO blend PEG solid polymer electrolyte,” Solid State Ionics, vol. 177, 2006,253-256.
[8] Zgang, S.S., Xu, K., Allen, J.L., Jow, T.R., “Effect of propylene carbonate on the low temperature performance of Li-ion cells, “Journal of Power Sources, vol. 110, 2002,216-221.
[9] silva, G.G., Marzana, B.E., Bruns, R.E., “Stratistically designed study of ternary electrolyte polymer material (PEO/LiClO4/ethylene carbonate), “Journal of Materials Science, Vol. 35,2000,4721-4728.
[10] 塑膠資訊, Vol 8,1996, 2。
[11] 簡文傑,導電高分子之電共聚合動力及電化學特性研究,碩士論文,台灣工業技術學院化工所,台北,1995。
[12] S. Uemura, K. Teshima, Synth. met., 101,1999, 701-702.
[13] 楊振毅,導電性高分子複合膜材料在乙醇氣體感測之應用,台灣工業技術學院碩士論文,台北,1996。
[14] 吳春桂,新型含導電高分子複合材料之合成,國科會成果報告,中央大學化學研究所,中壢,1995。
[15] 陳壽安,「導電高分子:新世代光電材料」,物理雙月刊,23卷,2期,2001,312-318.
[16] E. C. Venancio, A. J. Motheo, F. A. Amaral, N. Bocchi, J. Power Sources,94,2001,36.
[17] Gamier, Francis, Chemsdale, A. B. Homes, Angew., Chem. 110,1998 , 416.
[18] A. Kraft, A. C. Grimsdale, A. B. Holmes, Angew., Chem. 110 ,1998,416.
[19] B.E.Conway,Electrochemical Supercapacitors,Kluwer-Plenum,New-York,1999.
[20] A. Burke, J. Power Sources 91, 2000,37.
[21] A. Laforgue, P. Simon, J. F. Fauvarque, J. F. Sarrau, P. Lailler, J. Electrochem. Soc.,A1130,2001,148.
[22] C.-C. Hu, C.-H. Chu, Mater. Chem. Phys. 65,2000,329.
[23] Yen Wei, C. Yang, G. Wei. G, Feng, Synth. Met., 84,1997, 289.
[24] K. W. Evelyn Lai, P. D. Beattie, S. Holdcroft*, Synth. met., 84,1997, 87-88 .
[25] P. Rannou, M. Nechtschein*, Synth. met., 84, 1997,755-756.
[26] M. C. Bernard, V. T. Bich*, Synth. met., 101,1999,811-812.
[27] Xin-Gui Li, Mei-Rong Huang, Sheng-Xian Li, Acta Materialia,52,2004, 5363–5374.
[28] Nasalska A, Skompska M. J, Appl Electrochem,113,2003,33.
[29] Palys BJ, Bukowaka J, Jackowska K. J, Electroanal Chem,19,1997, 428 .
[30] Pham MC, Oulahyane M, Mostefai M, Chehimi MM., Synth Met,89,1998,93.
[31] Kudelski A, Bukowska J, Jackowska K. J ,Mol Struct,291,1999,482–483.
[32] Hong SY, Park SM. J, Electrochem Soc; E360,2003,150
[33] 胡啟章,電化學原理與方法,台北:五南書局,2002,4、5 與42。
[34] 方嘉德譯,儀器分析(下)(5th),台北:滄海書局,1992,833-866。
[35] B.J. Patys, M. Skompska, K. Jackowska, "Sensitivity of poly 1,8-diaminonaphthalene to heavy metal ions-electrochemical and vibrational spectra studies",Journal of Electroanalytical Chemistry, 433,1997,41-48.
[36] 蔡慧貞,以原位合成法於聚苯胺粉體表面製備奈米銅之研究,碩士論文,台北科技大學材料及資源工程系所,台北,2006。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔