跳到主要內容

臺灣博碩士論文加值系統

(44.221.73.157) 您好!臺灣時間:2024/06/20 20:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:褚宏偉
研究生(外文):Hung-Wei Chu
論文名稱:氧化鋅/鋅赤血鹽與氧化鋅/鋅赤血鹽/氧化釕赤血鹽複合薄膜的電聚合製備、特性及其電催化性質之研究
論文名稱(外文):The Preparation, Characterization and Electrocatalytic Behavior of Zinc Oxide/ Zinchexacyanoferrate Hybrid Film and Zinc Oxide/Zinchexacyanoferrate/Ruthenium Oxide Hexacyanoferrate Modified Electrodes
指導教授:陳生明
口試委員:Chellappan Retna Raj呂光烈曾添文
口試委員(外文):Chellappan Retna Raj
口試日期:2007-07-06
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:66
中文關鍵詞:修飾電極複合薄膜電催化鳥嘌呤旋轉電極流動注射分析法硫氧離子旋轉環碟電極
外文關鍵詞:Modified electrodesHybrid filmElectrocatalysisGuanineRDEFIASulfur oxianionsRRDE
相關次數:
  • 被引用被引用:0
  • 點閱點閱:747
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要分為兩部分來討論,第一部份為成功的製備一個具有電化學活性的氧化鋅/鋅赤血鹽(ZnO/ZnHCF)複合薄膜沈積在電極表面上,在pH=2的H2SO4溶液中混合Zn(NO3)2和K3[Fe(CN)6],藉由循環伏安法所製備而成的複合薄膜。 同時以循環伏安法(CV)和電化學石英晶體微天平法(EQCM)來研究複合薄膜的穩定成長的情形。在pH=2溶液中,由循環伏安法可以看到有二對氧化還原對。複合薄膜的表面形態使用掃瞄式電子顯微鏡(SEM)和原子力量顯微鏡(AFM)來研究。由能量分散性分光儀(EDS)光譜證明了複合薄膜中氧化鋅的存在,並且研究不同單價的陽離子所顯示的形式電位作用。複合薄膜固定於修飾電極表面上,將修飾電極置於緩衝溶液裡對鳥嘌呤的氧化還原對進行電催化的反應。經由循環伏安法(CV)和旋轉電極(RDE)技術來證實ZnO/ZnHCF複合薄膜的對鳥嘌呤的電催化活性行為。最後使用流動注射分析法(FIA) 來分析應用對ZnO/ZnHCF複合薄膜於電極上的可行性。
第二部分為成功的製備氧化鋅/鋅赤血鹽/氧化釕赤血鹽(ZnO/ZnHCF/RuOHCF) 複合薄膜沈積在電極表面上,在pH=2的H2SO4溶液中混合Zn(NO3)2、RuCl3和K3[Fe(CN)6],藉由循環伏安法所製備而成。同時循環伏安法和電化學石英晶體微天平法(EQCM)來研究複合薄膜的穩定成長情形。複合薄膜的表面形態使用掃瞄式電子顯微鏡(SEM)來研究。由能量分散性分光儀(EDS)光譜證明了複合薄膜中氧化鋅和氧化釕赤血鹽(RuOHCF)的存在,並且研究不同單價的陽離子所顯示的形式電位作用。將複合薄膜固定在電極表面上,RuII/III氧化還原對在緩衝溶液裡的電化學反應發生在負電位區域,其表現出相對的電化學特性,進而證實複合薄膜是被固定在電極表面。經由循環伏安法和旋轉環碟電極(RRDE)技術來證實氧化鋅/鋅赤血鹽/氧化釕赤血鹽(ZnO/ZnHCF/RuOHCF)複合薄膜對腎上腺素、多巴胺和L-胱胺酸的氧化反應以及S2O82-、SO52- 和IO3- 的還原反應有電催化活性行為。
Part 1. An electroactive polynuclear hybrid films of zinc oxide and zinc hexacyanoferrate (ZnO/ZnHCF) have been deposited on electrode surfaces from H2SO4 solution containing Zn(NO3)2 and K3[Fe(CN)6] by repetitive potential cycling method. Simultaneous cyclic voltammetry and electrochemical quartz crystal microbalance (EQCM) measurements demonstrate the steady growth of hybrid film. There are two redox couples present in voltammograms of hybrid film and it is obvious in the case of pH 2. Surface morphology of the present hybrid film was investigated using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Energy dispersive spectrometer (EDS) spectrum confirms the existence of zinc oxide in the hybrid film. The effect of type of monovalent cations on the redox behavior of resulting film was investigated. In pure supporting electrolyte, electrochemical responses of modified electrode resemble with that of a surface immobilized redox couple. The electrocatalytic activity of ZnO/ZnHCF hybrid film was investigated towards guanine using cyclic voltammetry and rotating disc electrode (RDE) techniques. Finally, feasibility of using ZnO/ZnHCF hybrid film-coated electrodes for analytical application was also investigated in flow injection analysis (FIA).
Part 2. Polynuclear mixed-valent hybrid films of zinc oxide/zinchexacyanoferrate /ruthenium oxide hexacyanoferrate (ZnO/ZnHCF/RuOHCF) have been deposited on electrode surfaces from H2SO4 solution containing Zn(NO3)2, RuCl3 and K3[Fe(CN)6] by potentidynamic cycling method. Simultaneous cyclic voltammetry and electrochemical quartz crystal microbalance (EQCM) measurements demonstrate the steady growth of hybrid film. Surface morphology of hybrid film was investigated using scanning electron microscopy (SEM). Energy dispersive spectrometer (EDS) data confirm existence of zinc oxide and ruthenium oxide hexacyanoferrate (RuOHCF) in the hybrid film. The effect of type of monovalent cations on the redox behavior of hybrid film was investigated. In pure supporting electrolyte, electrochemical responses of RuII/III redox transition occurring at negative potential region resemble with that of a surface immobilized redox couple. The electrocatalytic activity of ZnO/ZnHCF/RuOHCF hybrid film was investigated towards oxidation of epinephrine, dopamine and L-cysteine, and reduction of S2O82- and SO52- as well as IO3- using cyclic voltammetry and rotating ring disc electrode (RRDE) techniques.
目 錄

中文摘要………………………………………………………………………i
英文摘要……………………………………………………………………iii
致謝……………………………………………………………………v
目錄…………………………………………………………………vi
圖目錄……………………………………………………………ix
表目錄……………………………………………………………xiii
第一章 緒論…………………………………………………………………1
1.1 薄膜修飾電極簡介……………………………………1
1.1.1 化學修飾電極簡介………………………………1
1.1.2 鋅赤血鹽(ZnHCF)薄膜修飾電極簡介…….……2
1.1.3 氧化釕赤血鹽(RuOHCF)薄膜修飾電極簡介……3
1.2 金屬錯合物簡介…………………………………………3
1.3 普魯士藍及普魯士藍類似物之簡介 ………….………4
1.3.1 普魯士藍……….…………………………………4
1.3.2 普魯士藍類似物…………………………………6
1.4 簡述鳥嘌呤(Guanine)、多巴胺(Dopamine)、腎上腺素
(Epinephrine)、與硫氧離子 .………………………………8
1.4.1 鳥嘌呤(Guanine).…...……………………8
1.4.2 多巴胺(Dopamine)..…………………………10
1.4.3 腎上腺素(Epinephrine)….……………………11
1.4.4 硫氧離子………………………11
1.5 電催化反應之簡介.…………………………………12
第二章 實驗藥品、器材與分析方法……………………13
2.1 實驗藥品及器材……………………………………13
2.2 實驗原理與分析方法…………………………………14
2.2.1 循環伏安法(CV)…………………………………14
2.2.1.1 實驗原理………………………………………14
2.2.1.2 實驗方法……………………………………17
2.2.1.3 實驗裝置…………………………………17
2.2.2 電化學石英晶體微天平(EQCM)..………………17
2.2.2.1 實驗原理…………………………………17
2.2.2.2 實驗方法……………20
2.2.2.3 實驗裝置…………………………………………20
2.2.3 旋轉環-碟電極(RRDE).…………21
2.2.3.1 實驗方法………………………………21
2.2.3.2 實驗方法…………………………………21
2.2.3.3 實驗裝置…………………………………………………23
2.2.4 掃瞄式電子顯微鏡(SEM)………….……………24
2.2.4.1 實驗原理…………………………………24
2.2.4.2 實驗方法……………24
2.2.4.3 實驗裝置………………………………………………24
2.2.5 掃能量分散光譜分析儀(EDS)..………………25
2.2.5.1 實驗原理………………………………25
2.2.5.2 實驗方法……………26
2.2.5.3 實驗裝置…………………………………………27
2.2.6 流量注入分析儀(FIA)..…………………27
2.2.6.1 實驗原理………………………………27
2.2.6.2 實驗方法…………28
2.2.6.3 實驗裝置………………………………………28
第三章 ZnO/ZnHCF 複合薄膜修飾電極的製備、特性對鳥嘌呤的電催化反應之研究……………29
3.1 ZnO/ZnHCF複合薄膜修飾電極的製備……………………29
3.2 使用EQCM量測ZnO/ZnHCF複合薄膜的沈積……………30
3.3 ZnO/ZnHCF複合薄膜的表面型態……………………………31
3.4 ZnO/ZnHCF複合薄膜的複合薄膜的電化學性質………………31
3.5 ZnO/ZnHCF複合薄膜對鳥嘌呤電催化氧化反應………………32
3.6 ZnO/ZnHCF複合薄膜修飾電極對鳥嘌呤的流量注入分析量測分析應用……….………….………….………….……….…………33
第四章 ZnO/ZnHCF/RuOHCF複合薄膜修飾電極的製備、特性及電催化之研究…………35
4.1 ZnO/ZnHCF/RuOHCF複合薄膜修飾電極製備…………………35
4.2 使用EQCM量測ZnO/ZnHCF/RuOHCF複合薄膜的沈積……36
4.3 ZnO/ZnHCF/RuOHCF複合薄膜的電化學特性…………37
4.4 ZnO/ZnHCF/RuOHCF複合薄膜的電催化反應…………38
4.4.1 對腎上腺素、多巴胺和L-胱胺酸的電催化氧化反應…38
4.4.2 對S2O82-、SO52- 和IO3-的電催化還原反應……… 40
4.5 ZnO/ZnHCF/RuOHCF複合薄膜的表面特性……………40
第五章結論……………………………………………………41
附圖…………………………………………………………………43
參考文獻……………………………………………………………62
參考文獻

1K. D. Snell, A. G. Keenan, Chem. Soc. Rev., 8 (1979) 259.
2R.W. Murray, Acc. Chem. Res., 13 (1980) 135.
3R. W. Murray, in: A.J. Bard (Ed.), Electroanalytical chemistry, vol.13, Marcel
Dekker, NY, 1983, p.191.
4R. W. Murray, (Ed.), Molecular design of electrode surfaces. Techniques of
chemistry series, vol. XXII. Wiley, New York, 1992.
5D. Leech, in: M.E.G. Lyons (Ed.), Electroactive polymers electrochemistry,
Part 2, Plenum, New York, 1996, Ch. 10.
6M. L. Siperko, T. Kuwana, Electrochim Acta, 32 (1987)765.
7D. Engel, E. W. Grabner, Ber Bunsenges Phys Chem., 89 (1985) 982.
8I. Itaya, I. Uchida, Acc. Chem. Res., 19 (1986) 162.
9G. Horanyi, G. Inzelt, P.J. Kulesza, Electrochim Acta, 35 (1990) 811.
10A. Viehbeck, D.W. DeBerry, J. Electrochem. Soc., 132 (1985) 1369.
11H. Kellawi, D.R. Rosseinsky, J. Electroanal. Chem., 131 (1982) 373.
12K. Itaya, K. Shibayama, H. Akahoshi, S. Toshima, J. Appl. Phys., 53 (1982) 804.
13D.W. DeBerry, A. Viehbeck, J. Electrochem. Soc., 130 (1983) 249.
14R.J. Mortimer, J. Electrochem. Soc., 138 (1991) 633.
15C.B. Greenberg, Thin Solid Films, 251 (1994) 81
16P.M.S. Monk, R.J. Mortimer, D.R. Rosseinsky, Electrochromism: Fundamentals and applications. VCH, Weinheim, 1995.
17V.D. Neff, J. Electrochem. Soc., 132 (1985) 1382.
18E.W. Grabner, S. Kalwellis-Mohn, J. Appl. Electrochem., 17 (1987) 653.
19S. Kalwellis-Mohn, E.W. Grabner, Electrochim Acta, 34 (1989) 1265.
20K. Kuwabara, J. Nunome, K. Sugiyama, Solid State Ionics, 48 (1991) 303.
21M. Jayalakshmi, F. Scholz, J. Power Sources, 91 (2000) 217.
22S. Sinha, B.D. Humphrey, A.B. Bocarsly, Inorg Chem., 23 (1984) 203.
23S. Dong, G. Che, J. Electroanal. Chem., 315 (1991) 191.
24M. Weisenbacher, K. Kalcher, H. Greschoing, W. Ng, W.H. Chan, A. Volgaropoulos, Fresenius J Anal Chem., 344 (1992) 87.
25D.R. Shankaran, S.S. Narayanan, Bull. Electrochem., 14 (1998) 267.
26V.D. Neff, J. Electrochem. Soc., 125 (1978) 886.
27Z. Gao, E. Wang, P. Li, and Z. Zhao, Electrochim. Acta, 36 (1991) 147.
28C.X. Cai, H.Y. Ju, and H.Y. Chen, J. Electroanal. Chem., 397 (1995) 185.
29O. Ikeda, and H. Yoneyama, J. Electroanal. Chem., 265 (1989) 323.
30M.H. Pournaghi-Azar, and H. Razmi-Nerbin, J. Electroanal. Chem., 456 (1998) 83.
31S. Jayarama Reddy, A. Dostal, and F. Scholz, J. Electroanal. Chem., 403 (1996) 209.
32J. J. Xu, C. Wang, and H.Y. Chen, Anal. Sci., 16 (2000) 231.
33M. Jiang, X. Y. Zhou, Z. F. Zhao, Ber. Bunsen-Ges. Phys. Chem., 95 (1991) 720.
34C. X. Cai, H. X. Ju, H. Y. Chen, Anal. Chim. Acta, 310 (1995) 145.
35G. Y. Shi, J. X. Lu, F. Xu, W. L. Sun, L. T. Jin, K. Yamamoto, S. G. Tao, J. J. Y. Jin, Anal. Chim. Acta, 391 (1999) 307.
36S. Zhang, W. L. Sun, W. Zhang, W. Y. Qi, L. T. Jin, K. Yamamoto, S. G.Tao, J. Y. Jin, Anal. Chim. Acta, 386 (1999) 21.
37A. Eftekhari, Microchim. Acta, 141 (2003) 15.
38A. Abbaspour, M.A. Mehrgardi, Anal. Chem., 76 (2004) 5690.
39B. D. Humphrey, S. J. Sinha, A. B. Bocarsly, J. Phys. Chem., 91 (1987) 586-593.
40K. Ogura, M. Nakayama, C. Kusumoto, J. Electrochem. Soc., 143 (1996) 3606.
41S. M. Golabi, F. Noor-Mohammadi, J. Solid State Electrochem., 2 (1998) 30.
42J. Wang, X. J. Zhang, M. Prakash, Anal. Chim. Acta, 395 (1999) 11.
43J. X. Zhou, E. K. Wang, J. Electroanal. Chem., 331 (1992) 1029.
44S. Milardovic, I. Kruhak, D. Ivekovic, V. Rumenjak, M. Tkalcec, B. S. Grabaric, Anal. Chim. Acta, 350 (1997) 91.
45P. J. Kulesza, M. A. Malik, S. Zamponi, M. Berrettoni, R. Marassi, J.Electroanal. Chem., 397 (1995) 287.
46J. Joseph, H. Gomathi, G.P. Rao, J. Electroanal. Chem., 431 (1997) 231.
47A. Eftekhari, J. Electroanal. Chem., 537 (2002) 59.
48M. H. Pournaghi-Azar, H. Nahalparvari, Electrochimica Acta, 50 (2005) 2107.
49T.Yoshida, K. Terada, D. Schlettwein, T. Oekermann, T. Sugiura, H. Minoura, Adv. Mater., 12 (2000) 1214.
50G. Sauerbrey, Z. Phys., 155 (1959) 206.
51H. Jaegfeldt, A. B. C. Torstensson, L. G. O. Gorton, G. Johansson, Anal. Chem., 53 (1981) 1979.
52A. J. Bard, L. R. Faulkner, Electrochemical Methods, Wiley, New York 1980, p. 521.
53I. Markovich, D. Mandler, J. Electroanal. Chem. 2000, 484, 194. A. A. Karyakin, Electroanalysis, 16 (2001) 813.
54A. A. Karyakin, Electroanalysis, 16 (2001) 813.
55S. Q. Lin, Y. Chen, H. Y. Chen, J. Electroanal. Chem., 502 (2001) 197.
56J. W. Mo, B. Ogorevc, X. Zhang, B. Pihar, Electroanalysis, 12 (2000) 48.
57S. M. Chen, J. Electroanal. Chem., 521 (2002) 29.
58V. Kertesz, N.M. Dunn, G.J.V. Berkel, Electrochim. Acta, 47 (2002) 1035.
59M. H. Pournaghi-Azar, H. Razmi-Nerbin, B. Hafezi, Electroanalysis, 14 (2002) 206.
60P. J. Kulesza, M. A. Malik, J. Skorek, K. Miecznikowski, S. Zamponi, M. Berrettoni, M.Giorgetti, R. Marassi, J. Electrochem. Soc., 146 (1999) 3757.
61P. J. Kulesza, M. A. Malik, A. Schmidt, A. Smolinska, K. Miecznikowski, S. Zamponi, A. Czerwinski, M. Berrettoni, R. Marassi, J. Electroanal. Chem., 487 (2000) 57.
62D.M. Zhou, H.X. Ju, H.Y. Chen, J. Electroanal. Chem., 408 (1996) 219.
63M. Jiang, X.Y. Zhou, Z.F. Zhao, Ber. Bunsenges Phys. Chem., 95 (1991) 720.
64A.A. Karyakin, O.V. Gitelmacher, E.E. Kayakina, Anal. Chem., 67 (1995) 2419.
65M.S. Lin, B.I. Jan, Electroanalysis, 9 (1997) 340.
66M.S. Lin, T.F. Tseng, W.C. Shih, Analyst, 123 (1998) 159.
67R. Garjonyte, A. Malinauskas, Sens. Actuators B, 46 (1998) 236.
68S.-M. Chen, M.-F. Lu, K.-C. Lin, J. Electroanal. Chem., 566 (2004) 291
69S.-M. Chen, S.-H. Hsueh, J. Electroanal. Chem., 579 (2005) 163
70T. R.L.C. Paixao, M. Bertotti, Electrochim. Acta, 52 (2007) 2181
71J. Brown, J. Philos. Trans., 33 (1724) 17.
72T. Ohtasuka, M. Masuda and N. J. Sato, E lectrochem. Soc., 134 (1987) 206.
73K. Itaya, I. Uchida and V. D. Neff, Acc. Chem. Res., 19 (1986) 162.
74D. Davidson, L. A. Welo, J. Phys. Chem., 32 (1928) 1191.
75A. B. Bocarsly and S. Sinha, J. Electroanol. Chem., 137 (1982) 157.
76M. Kunitake, A. Massashi, K. Akiyoshi, K. Kawatana, N.Nakashima and O. J. Manabe, J. Electroanal.Chem., 292 (1990) 281.
77L. M. Siperko and T. Kuwana, J. Electrochem. Soc., 130 (1983) 396.
78M. Jiang, X. Zhou and Z. Zhao, J. Electroanal.Chem., 36 (1990) 147.
79S. Dong and Z. Jin, J. Electroanal. Chem., 256 (1988) 193.
80S. Dong and Z. Li, J. Electroanal. Chem., 210 (1986) 31.
81M. Jing, X. Zhou and Z. Zhao, J. Electroanal. Chem., 292 (1990) 289.
82(a) K. Itaya, T. Ataka and S.Toshima, J. Am. Chem. Soc., 104 (1982) 3751. (b) K. P. Rajin and V. D. Welo, J. Phys. Chem., 32 (1928) 1191.
83J. A. Cox and P. J. Kulesza, Anal. Chem., 56 (1984) 1021.
84R. Sarala, S. B. Rabin and D. M. Stanbury, Inorg. Chem., 30 (1991) 3999.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top