(3.235.41.241) 您好!臺灣時間:2021/04/15 04:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:謝臻蔚
研究生(外文):Jan-Wei Shie
論文名稱:細胞色素C及血紅素固定於DNA和Nafion與聚鐵紫質結合多層奈米碳管薄膜的製備和電催化特性之研究
論文名稱(外文):Characterization and Bioelectrocatalytic Peoperties of Cytochrome c and Hemoglobin by Direct Electrochemistry of DNA and Nafion and Poly (FeTAPP) Incorporated with Multi-walled Carbon Nanotubes Modified Electrodes
指導教授:陳生明
指導教授(外文):Shen-Ming Chen
口試委員:呂光烈曾添文
口試委員(外文):Guang-Lie LuTain-Wen Zeng
口試日期:2007-07-06
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:中文
論文頁數:85
中文關鍵詞:多層奈米碳管沉積薄膜修飾電極電催化鹵氧化物陰離子抗壞血酸半胱胺酸Nafion血紅素
外文關鍵詞:Multiwall carbon nanotubescomposite filmmodified electrodeselectrocatalysisnafionhemoglobintrichloroacetic acidmyoglobin
相關次數:
  • 被引用被引用:0
  • 點閱點閱:123
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究第一部份,主要是探討一個新式且具有傳導性的多層奈米碳管-DNA-細胞色素C生物沉積薄膜,此薄膜由多層奈米碳管混合DNA及細胞色素C利用電化學方法修飾於玻璃碳電極(GCE),黃金(Au)及銦錫氧化(ITO)電極上。因為多層奈米碳管及DNA的表現所以增加了生物沉積薄膜的表面覆蓋濃度(Γ),並使電子轉移常數(Ks)提高了21 %,除此之外還可以減緩細胞色素C降解。而在電催化效果上對於鹵氧化物陰離子的還原反應,抗壞血酸(Ascorbic acid,AA)、半胱胺酸(L-cysteine,LC)等生化分子的氧化反應都具有增強效果。透過電化學石英晶體微量天平方法可將生物沉積薄膜修飾於黃金電極,提高了MWCNTs,DNA,cyt c的實用性。而生物沉積薄膜修飾於透明的ITO電極上可用掃描式電子顯微鏡(SEM)和原子力顯微鏡(AFM)觀察到薄膜的表面型態並展現出DNA,細胞色素C與多層奈米碳管的結合。
第二部份為,利用循環伏安法,在pH=2.5酸性溶液下製備多層奈米碳管-Nafion-血紅素薄膜於玻璃碳,Au及ITO電極上。利用多層奈米碳管及Nafion的表現增加血紅素的表面覆蓋濃度。多層奈米碳管-Nafion-血紅素薄膜修飾電極對於氧、過氧化氫及三氯醋酸具有電催化還原活性,主要是經由FeⅢ/FeⅡ此氧化還原對進行反應。在pH=2.5緩衝溶液中血紅素的FeⅢ/FeⅡ氧化還原對電位在-0.15V催化波峰電流Ipcat隨著催化物的濃度增大而有明顯的增加。將多層奈米碳管-Nafion-血紅素薄膜沈積於ITO電極上則可以在掃描式電子顯微鏡及原子力顯微鏡觀察到薄膜的表面型態,並展現出Nafion,血紅素與多層奈米碳管的結合。
第三部份為,由聚鐵紫質結合多層奈米碳管所組成的新沈積薄膜,成功的製備於玻璃碳,Au及ITO電極上。多層奈米碳在沉積薄膜中的表現增加了聚鐵紫質的表面覆蓋濃度(Γ),此沈積薄膜當轉移到各種不同酸鹼性水溶液中其氧化還原對會隨著pH不同而不同。在pH=1.5的緩衝溶液中沈積薄膜對於氧氣(以肌紅素為介質)和過氧化氫得還原反應具有相當高的催化活性。透過電化學石英晶體微量天平方法可將此沉積薄膜修飾於黃金電極,提高了多層奈米碳管、聚鐵紫質的實用性,還可以觀察到薄膜即時成長的情形。還能將多層奈米碳管、聚鐵紫質製備於ITO電極,去作掃描式電子顯微鏡及原子力顯微鏡薄膜表面型態的鑑定。
Part Ⅰ:A novel conductive biocomposite film (MWCNTs-DNA-cyt c) containing multi-walled carbon nanotubes (MWCNTs) incorporated with DNA and cytochrome c (cyt c) was synthesized on glassy carbon electrode (GCE), gold (Au) and indium tin oxide (ITO) by potentiostatic methods. The presence of both MWCNTs and DNA in the biocomposite film enhanced the surface coverage concentration (Γ), increased the electron transfer rate constant (Ks) to 21 % and decreased the degradation of cyt c. The biocomposite film also exhibited a promising enhanced electrocatalytic activity towards the reduction of halogen oxyanions and oxidation of biochemical compounds such as ascorbic acid and L-cysteine The biocomposite films were also produced on Au electrode using electrochemical quartz crystal microbalance(EQCM) studies, which revealed the enhancements in the functional properties of MWCNTs, DNA and cyt c. The surface morphology of the biocomposite films deposited on transparent semiconductor ITO were studied using scanning electron microscopy, which revealed that DNA and cyt c were incorporated on MWCNTs.
PartⅡ:A conductive composite film (MWCNTs-NF-Hb) containing MWCNTs incorporated with nafion (NF) and hemoglobin (Hb) was synthesized on GCE, Au, ITO and screen printed carbon electrode (SPCE) by potentiostatic methods. The presence of both MWCNTs and NF in the composite film enhanced the Γ increased the Ks to 132 %. The composite film also exhibited promising enhanced electrocatalytic activity towards the reduction of O2, H2O2 and CCl3COOH. The MWCNTs-NF-Hb modified GCE sensitivity values were higher than the values obtained for other film modified GCEs. The composite films were also produced on Au electrode using EQCM studies, which revealed the enhancements in the functional properties of MWCNTs, NF and Hb. The surface morphology of the composite films deposited on transparent semiconductor ITO were studied using scanning electron microscopy, which revealed that NF and Hb were incorporated on MWCNTs. the flow injection analysis was used for the amperometric studies of analytes at MWCNTs-NF-Hb film modified SPCE.
Part Ⅲ:A novel conductive composite film (MWCNTs-PFeTAPP) containing multi-walled carbon nanotubes (MWCNT) with poly(iron tetra(o-aminophenyl) porphyrin) (PFeTAPP) was synthesized on glassy carbon electrode (GCE), gold (Au) and indium tin oxide (ITO) by potentiostatic methods. The presence of MWCNTs in the composite film enhanced the surface coverage concentration (Γ) of PFeTAPP. The composite film exhibited a promising higher catalytic activity towards the reduction of compounds such as oxygen (mediated by myoglobin) and hydrogen peroxide in pH=1.5 aqueous solution. The cyclic voltammetry (CV) was used for the measurement of electroanalytical properties of the analytes by means of composite film modified electrodes. Further the composite films produced on Au electrode were used for EQCM studies, which revealed the enhancements in the functional properties of MWCNTs and PFeTAPP. The surface morphology of the composite films deposited on transparent semiconductor ITO were studied using scanning electron microscopy and atomic force microscopy, which revealed that PFeTAPP incorporated on MWCNTs.
中文摘要 i
英文摘要 iii
誌謝 vi
目錄 vi
表目錄 ix
圖目錄 x
第一章 緒論 1
1.1感測器簡介 1
1.1.1 感測器定義 1
1.1.2 生物感測器 2
1.2修飾電極簡介 3
1.2.1 化學修飾電極 3
1.3奈米碳管 5
1.3.1 奈米碳管的製備 6
1.4 Nafion簡介 6
1.5 DNA簡介 7
1.6蛋白質簡介 7
1.6.1 金屬蛋白質 8
1.6.2 紫質 9
1.6.3 金屬紫質錯和物 9
1.6.4 鐵紫質 10
1.6.5 細胞色素C 12
1.6.6 血紅素 12
第二章 實驗藥品器材與分析方法 14
2.1實驗藥品器材 14
2.1.1 實驗藥品 14
2.1.2 實驗器材 15
2.2分析方法 16
2.2.1 循環伏安法 16
2.2.1.1 原理 16
2.2.1.2 實驗方法 18
2.2.1.3 實驗裝置 18
2.2.2 電化學石英晶體微天平 19
2.2.2.1 原理 19
2.2.2.2 實驗方法 20
2.2.2.3 實驗裝置 20
2.2.3 旋轉碟電極法 21
2.2.3.1 原理 21
2.2.3.2 實驗方法 22
2.2.3.3 實驗裝置 22
2.2.4 原子力顯微鏡 22
2.2.4.1 原理 22
2.2.4.2 實驗裝置 24
第三章 細胞色素C修飾於多層奈米碳管結合DNA生物沈積薄膜電極上的直接電化學與生物電催化性質之研究 25
3.1前言 25
3.2製備多層奈米碳管和多層奈米碳管-DNA-細胞色素C薄膜修飾
電極 26
3.3多層奈米碳管-DNA-細胞色素C沉積薄膜的電化學合成與特性
28
3.4多層奈米碳管-DNA-細胞色素C生物沉積薄膜的電化學特性
31
3.5多層奈米碳管-DNA-細胞色素C生物沈積薄膜對鹵氧化物的
電催化還原反應 33
3.6多層奈米碳管-DNA-細胞色素C生物沈積薄膜對抗壞血酸和半
胱胺酸的電催化氧化反應 35
3.7多層奈米碳管-DNA-細胞色素C生物沈積薄膜對分析物進行流
動注射分析研究 37
3.8結論 38
第四章 血紅素固定於多層奈米碳管結合Nafion複合薄膜電極的特性與電催化研究 39
4.1前言 39
4.2多層奈米碳管和多層奈米碳管-Nafion-血紅素複合薄膜的製備
39
4.3多層奈米碳管-Nafion-血紅素複合薄膜的電化學合成與其特性
介紹 40
4.4多層奈米碳管-Nafion-血紅素複合薄膜對氧氣的電催化還原反
應 44
4.5多層奈米碳管-Nafion-血紅素複合薄膜對雙氧水及三氯醋酸的
電催化還原反應 45
4.6多層奈米碳管-Nafion-血紅素複合薄膜對分析物的流動注射分
析 46
4.7多層奈米碳管-Nafion-血紅素複合薄膜對分析物的流動注射分
析 47
4.8結論 48
第五章 聚鐵紫質結合多層奈米碳管沈積薄膜的電化學製備與電催化
性質之研究 49
5.1前言 49
5.2多層奈米碳管和多層奈米碳管-聚鐵紫質薄膜修飾電極的製備
50
5.3使用EQCM量測多層奈米碳管-聚鐵紫質薄膜的電化學聚合過
程 52
5.4多層奈米碳管-聚鐵紫質沉積薄膜的特性與表面型態 52
5.5利用肌紅素與多層奈米碳管-聚鐵紫質沉積薄膜對氧氣電催化
還原 53
5.6多層奈米碳管-聚鐵紫質沉積薄膜對過氧化氫電催化還原反應
55
5.7結論 57
參考文獻 82
.Clark, C.Lyons, Annals of the New York Academy of Sciences, 102 (1962) 29
[2] B.Danielsson, K. Mosbach, Oxford University Press:New York.,1989.
[3] A.Sternesjo, Anal. Chem., 226(1995) 175.
[4] M. A. Glimartin, J. P.Hart, Analyst, 120 (1995) 1029.
[5] P. Saber, W. Lund, Talanta, 29 (1982) 457.
[6] J. Wang, D. L. Hutchins-Kumar, Anal. Chem., 58 (1986) 402.
[7] R. P. Baldwin, Thomsen, K. N. Talanta, 38 (1991) 1.
[8] R. W. Murray, A. G.. Ewing, R. A. Durst, Anal. Chem., 59 (1987) 379.
[9] W. M. Damien, Analyst, 119 (1994) 1953.
[10] R. W. Murry, Acc. Chem. Res. 13(1980),135.
[11] Yildirim, T.; et al.. "Pressure-induced interlinking of carbon nanotubes". Physical Review B 62 (2000) 19.
[12] M. S. Dresselhaus, J. Mater. Res. 13(1998)2355.
[13] C. Heitner-Wirguin, Journal of Membrane Science, 120 (1996) 1.
[14] K. A. Mauritz, R. B. Moore, Chemical Reviews, 104 (2004) 4535.
[15] Church, Steven. "Del. firm installs fuel cell", The News Journal, January 6, (2006), p. B7.
[16] N. Gunduz,T. Gunduz,M. Hayvali,Talanta, 48 (1999) 71.
[17] R. Bonnett in D. Dolphin(Ed.),The Porphyrins, Structure and Synthesis, Part A, Vol I, pp 1 - 27, Academic Press, New York, San Francisco, London 1978.
[18] G. P. Moss, Eur. J. Biochem., 178(1988)277.
[19] G. P. Moss, Pure Appl. Chem., 59(1987)779.
[20] S.-M. Chen,S.-V. Chen, Electrochim.Acta,48 (2003) 513.
[21] S.-M. Chen,C.-C. Tseng, Electrochim. Acta,49 (2004) 1903.
[22] Schiedt, W. R.; Geiger, D. K. J. Chem. Soc. Chem. Commun. (1979) 1154.
[23] Yassuko Iamamoto, Marilda D. Assis, Katia J. Ciuffi, Herica C. Sacco, Journal of Molecular Catalysis A: Chemical 109 (1996) 189.
[24] Daisuke Takasu, Nobuyuki Tomioka, Dong-Lin Jiang, Takuzo Aida, Journal of Inorganic Biochemistry, Abstracts.242.
[25] E.F. Bowden, F.M. Hawkridge, H.N. Blount, J. Electroanal. Chem., 161 (1984) 355.
[26] H.A.O. Hill, N.I. Hunt, A.M. Bond, J. Electroanal. Chem., 436 (1997) 17.
[27] P. Yeh, T. Kuwana, Chem. Lett., (1977) 1145.
[28] M.J. Eddowes, H.A.O. Hill, J. Chem. Soc., Chem. Commun., (1977) 771.
[29] A. Szucs, G.D. Hitchens, J.O.’M. Bockris, Electrochim. Acta, 37 (1992) 403.
[30] G. Battistuzzi, M. Borsari, G. Rossi, M. Sola, Inorg. Chim. Acta, 272 (1998) 168.
[31] A. Szues, M. Novak, J. Electroanal. Chem., 383 (1995) 75.
[32] Z.-X. Huang, M. Feng, Y.-H. Wang, J. Cui, D.-S. Zou, J. Electroanal. Chem., 416 (1996) 31.
[33] M.J. Eddowes, H.A.O. Hill, J. Am. Chem. Soc., 101 (1979) 4461.
[34] F.A. Armstrong, H.A.O. Hill, N.J. Walton, Acc. Chem. Res., 21 (1988) 407.
[35] S. Dong, J. Li, Bioelectrochem. Bioenerg., 42 (1997) 7.
[36] Y. Zhou, T. Nagaoka, G. Zhu, Biophys. Chem., 79 (1999) 55.
[37] G. Niaura, A.K. Gaigalas, V.L. Viker, J. Electroanal. Chem., 416 (1996) 167.
[38] O. Ikeda, Y. Shirota, T. Sakurai, J. Electroanal. Chem., 287 (1990) 179.
[39] X. Qu, T. Lu, S. Dong, J. Mol. Catal. A: Chem., 102 (1995) 111.
[40] E. D. A. Stemp, and J. K. Barton, Inorg. Chem., 39 (2000) 3868.
[41] A. E. F. Nassar, J. F. Rusling, J. Am. Chem. Soc., 118 (1996) 3043.
[42] W. Zhang, F. Wan, W. Zhu, H. Xu, X. Ye, R. Cheng, L.T. Jin, J. of Chromatography. B., 818 (2005) 227.
[43] G. Wu, Y.S. Chen, B.Q. Xu, Electrochem.Comm., 7 (2005) 1237.
[44] J. Wang, M. Musameh, Anal. Chim. Acta., 511 (2004) 33.
[45] J. Wang, M. Li, Z. Shi, N. Li, Z. Gu, Electrochim. Acta., 47 (2001) 651.
[46] Q. Li, J. Zhang, H. Yan, M. He, Z. Liu, Carbon, 42 (2004) 287.
[47] J. Zhang, J.K. Lee, Y. Wu, R.W. Murray, Nano Lett., 3 (2003) 403.
[48] A. Star, T.R. Han, J. Christophe, P. Gabriel, K. Bradley, G. Gruner, Nano Lett., 3 (2003) 1421
[49] M. Zhang, K. Gong, H. Zhang, L. Mao, Biosensors and Bioelectronics, 20 (2005) 1270.
[50] Yan, Y., Zhang, M., Gong, K., Su, L., Guo, Z., Mao, L., Chem. Mater. 17 (2005)3457.
[51] Han, G., Yuan, J., Shi, G., Wei, F., Thin Solid Films. 474(2005)64.
[52] Deng, G.H., Xiao, X., Chen, J.H., Zeng, X.B., He, D.L., Kuang, Y.F., Lett. to the Editor/Carbon. 43(2005)1557
[53] Frackowiak, E., Khomenko, V., Jurewicz, K., Lota, K., Béguin, F., J. of Power Sources. 153(2006)413.
[54] Daniel, S., Rao, T.P., Rao, K.S., Rani, S.U., Naidu, G.R.K., Lee, H.Y., Kawai, T., 2006. Sensors and Actuators B. xxx, xxx. (doi:10.1016/j.snb.2006.06.014).
[55] Chen, S. M., Liao, C. J., Vasantha, V.S.,. J. Electroanal. Chem. 589 (2006) 15.
[56] Chen, S. M., Liu, M. I., Electrochim. Acta. 51 (2006) 4744.
[57] Wang, J., Dai, J., Yarlagadda, T., Langmuir. 21 (2005) 9.
[58] Tahhan, M., Truong, V.T., Spinks, G.M., GWallace, G., Smart Mater. Struct. 12 (2003) 626.
[59] Laviron, E.,. J. Electroanal. Chem. 101(1979)19.
[60] Komura, T., Niu, G.Y., Yamaguchi, T., Asano, M., Matsuda, A., Electroanalysis. 16(2004)1791.
[61] Mohadesi, A., Taher, M.A., 2006. Sensors and Actuators B: Chemical. xxx, xxx (doi:10.1016/j.snb.2006.10.016).
[62] Andrieux, C.P., Haas, O., SavGant, J.M., J. Am. Chem. Soc. 108(1986)8175.
[63] S.M. Chen, Y.L. Chen, R. Thangamuthu, J. Solid State Electrochem., (DOI 10.1007/s10008-007-0315-3).
[64] White BA, Murray RW, J. Electroanal. Chem. 189(1985) 345.
[65] S.M. Chen, Y.L. Chen, R. Thangamuthu, J. Solid State Electrochem., (DOI 10.1007/s10008-007-0315-3).
[66] Bruti EM, Giannetto M, Mori M, Seeber R , Electroanalysis 11(1999) 565.
[67] Armijo F, Carmen Goya M. Gimeno Y, Carmen Arevalo M, Iesus Aguirre M, Hernadez Creus A Electrochem Commun 8 (2006) 779.
[68] Brukenstein S, Shay M ., Electrochem Acta. 30(1985) 1295.
[69] Meites L., Polarographic techniques, 2nd edn.Wiley, New York, (1965) 282.
[70] Bond AM Modern polarographic methods in analytical chemistry. Marcel Dekker, New York, (1980) 29.
[71] Q.Wang, G. Lu, B. Yang, Biosen. Bioelectron. 19 (2004) 1269.
[72] J. Zhang, M. Oyama, Microchem. J. 78 (2004) 217
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔