(3.236.231.14) 您好!臺灣時間:2021/04/11 23:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:莊耀瑋
研究生(外文):Yao-Wei Chuang
論文名稱:利用外部光源注入、光電子迴授技術和光子晶體光纖改善CATV/ROF傳輸系統
論文名稱(外文):Improvement of CATV/ROF Transport Systems by Using External Light Injection/Optoelectronic Feedback Techniques and Photonic Crystal Fiber
指導教授:呂海涵呂海涵引用關係
口試委員:曾世杰何文章林恭如
口試日期:2007-06-15
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:光電工程系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:80
中文關鍵詞:微波光纖光纖有線電視外部光源注入光電子迴授技術光子晶體光纖
外文關鍵詞:Radio-on-fiberfiber optical cable televisionexternal light injectionoptoelectronic feedback techniquesphotonic crystal fiber
相關次數:
  • 被引用被引用:0
  • 點閱點閱:89
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本篇論文,我們提出及驗證不同的CATV與ROF的傳輸系統,並同時利用外部光源注入、光電子迴授技術和光子晶體光纖克服高傳輸距離的限制因子,其中架構包含於雙向式系統、分波多工技術、全雙工環形網路及混和式訊號傳輸。

在第一個架構中,將垂直共振腔面射型雷射運用在外部光源注入及光電子迴授技術上,建構出一個雙向式 Radio-on-DWDM 的傳輸系統。由於注入鎖模和光電子迴授不但大量提升雷射本身的頻率響應而且使驅動電流降低,更進一步的促使系統性能獲得整體改善。因此在實驗參數中,我們可以到良好的誤碼率、誤差向量振幅及互調失真載波比,並能滿足於應用在寬頻ROF分佈網路。
第二個系統架構,我們利用光子晶體光纖本身的特性,補償光纖色散以及減少交叉相位調變所影起的串音失真,藉此機制下建構一個外調式的雙波長WDM CATV系統。在探討中,光子晶體光纖能將光纖色散抑制幾乎接近為零,相較同樣都是外調式的雙波長WDM系統,結合於3.6公里的光子晶體光纖與100公里的單模光纖,能夠得到相當不錯的載波二次合成拍差比和載波三次合成波差比之參數值,並在含有PCF的損失下,載波雜訊比是在可接受的範圍內。
第三個系統架構,我們再次使用光子晶體光纖的補償特性,建構一個包含WDM塞取多工技術之全雙工ROF傳輸系統。在這樣的應用下,是第一次提出將光子晶體光纖用於克服色散效應所造成RF功率消減的補償機制。相對於在系統性能上,誤碼率與三階互調失真對載波比都有不錯的測試結果。進而可被視為高傳輸距離的微波光連結的全雙工Radio-on-PCF環形網路。
最後一個架構中,我們提出一個混和式的傳輸系統,結合於CATV和ROF的直調式傳輸,並同時利用外部光源注入、光電子迴授技術和光子晶體光纖改善訊號品質。在CATV的參數量測下,我們能夠得到良好的載波雜訊比、載波二次合成拍差比和載波三次合成波差比。另一方面,在ROF的參數量測下,可以擁有不錯的誤碼率與三階互調失真對載波比。因此經由實驗論證,我們所提出的CATV和ROF的直調式傳輸系統,應用於光纖骨幹是非常極具吸引力的架構。
In the thesis, we propose and demonstrate variously fiber optical cable television (CATV) and radio-on-fiber (ROF) transport system, which include architectures of bidirectional system, wavelength-division-multiplexing (WDM) techniques, full-duplex ring network and hybrid signals transmission as well as employing external light injection, optoelectronic feedback techniques and photonic crystal fiber (PCF) to overcome limitation factors of long distance transmission.
In the first architecture, we study a bidirectional radio-on-dense-WDM (DWDM) transport system based on vertical-cavity surface-emitting lasers (VCSELs) external light injection and optoelectronic feedback techniques. Using injection-locked and optoelectronic feedback techniques not merely to increase large laser frequency response but reduce laser threshold current as well, leading to an improvement in systems’ overall performances. Good parameters of bit error rate (BER), error vector magnitude (EVM), and intermodulation distortion to carrier ratio (IMD/C) were obtained; consequently, to inter-operate satisfyingly with broadband ROF distribution networks.
In the second architecture, we build a two-wavelength WDM CATV externally modulated transport system employing PCF as a dispersion compensation device to compensate the fiber dispersion and to reduce the cross-phase modulation (XPM)-induced crosstalk. The PCF could efficiently suppress fiber dispersion to be almost zero. In comparison a two-wavelength WDM externally modulated transport system without using PCF, good performances of composite second order (CSO) and composite triple beat (CTB) were achieved accompanied by acceptable carrier-to-noise ratio (CNR) due to the power loss of the PCF in the our proposed WDM CATV system over a combination of 100-km single-mode fiber (SMF) and 3.6-km PCF.
In the third architecture, we also use PCF in a full-duplex ROF transport system based on WDM and optical add-drop multiplexing techniques. RF power degradation owing to the fiber chromatic dispersion was overcome by employing proper length of PCF for the first time, low third order intermodulation distortion to carrier ratio (IMD3/C) and BER values were obtained in the full-duplex radio-on-PCF ring network; moreover, to be suitable for the long-haul microwave optical links.
Finally architecture, we propose a hybrid signals transport system, combining a directly modulated CATV and ROF transmission using simultaneously external light injection, optoelectronic feedback techniques, and PCF to improve signal quality. As result of the experiment, excellent performances of CNR, CSO and CTB were obtained for CATV band; as well as BER and IMD3/C values were achieved for ROF band. This demonstrated that such a CATV/ROF transport system is very attractive for the fiber backbone applications.
Contents

中文摘要 i
Abstract iii
Acknowledgements v
Contents vii
List of Figures ix
List of Table xi
Chapter 1 ..Introduction 1
1.1 ..Research Background 1
1.2 ..Motivation and Purpose 4
1.3 ..Structure 8
Chapter 2 ..Bidirectional Radio-on-DWDM Transport Systems Based on
..VCSELs Injection-Locked and Optoelectronic Feedback Techniques 13
2-1 ..Introduction 13
2-2 ..Experimental Setup 15
2-3 ..Experimental Results and Discussion 17
2-4 ..Summary 21
Chapter 3 ..A Two-Wavelength WDM CATV Transport System
.-Using Photonic Crystal Fiber to Improve CSO/CTB Performances 28
3-1 ..Introduction 28
3-2 ..Experimental Setup 29
3-3 ..Experimental Results and Discussion 31
3-4 ..Summary 35

Chapter 4 ..A Full-Duplex Radio-on-Fiber Transport System
.-Employing Photonic Crystal Fiber 40
4-1 ..Introduction 40
4-2 ..Experimental Setup 41
4-3 ..Experimental Results and Discussion 43
4-4 ..Summary 46
Chapter 5 ..CATV/ROF Transport Systems Based on Light Injection
../Optoelectronic Feedback Techniques and Photonic Crystal Fiber 51
5-1 ..Introduction 51
5-2 ..Experimental Setup 52
5-3 ..Experimental Results and Discussion 54
5-4 ..Summary 59
Chapter 6 ..Conclusion 65
6.1 ..Summary of the Thesis 65
6.2 ..Suggestions and Outlooks 69
References 72
Publication List 78

List of Figures

Fig. 1-1 ..(a) The concept of radio-on-fiber transport system 10
Fig. 1-1 ..(b) Radio-on-fiber could include various services 10
Fig. 1-2 ..The concept of intelligence transport system 11
Fig. 1-3 ..ROF technology for intelligence transport system 11
Fig. 1-4 ..Employing subcarrier multiplexing techniques in fiber optical systems 12
Fig. 1-5 ..Combination of subcarrier multiplexing and DWDM transport systems 12
Fig. 2-1 ..Experimental configuration of our proposed
..bidirectional radio-on-DWDM transport systems 22
Fig. 2-2 ..The configuration of the broadband ASE optical source 23
Fig. 2-3 ..The frequency response of the VCSEL1 24
Fig. 2-4 ..(a) Electrical spectrum of the received signal for free running 25
Fig. 2-4 ..(b) Electrical spectrum of the received signal
..with -5 dBm light injection and optoelectronic feedback 25
Fig. 2-5 ..The EVM value at various SMF lengths 26
Fig. 2-6 ..(a) Measured BER curves
..as a function of the received optical power (VCSEL1) 27
Fig. 2-6 ..(b) Measured BER curves
..as a function of the received optical power (VCSEL4) 27
Fig. 3-1 ..Two optically amplified AM-VSB transport systems
-(a) System I: a two-wavelength WDM CATV transport system 36
Fig. 3-1 ..(b) System II: a two-wavelength WDM CATV transport system
..employing PCF as a dispersion compensation device 36
Fig. 3-2 ..The microscopic picture of the micro-structured region of the PCF 37
Fig. 3-3 ..(a) Measured CNR values under NTSC channel number
..for a two-wavelength WDM CATV systems I and II 38
Fig. 3-3 ..(b) Measured CSO values under NTSC channel number
..for a two-wavelength WDM CATV systems I and II 38
Fig. 3-3 ..(c) Measured CTB values under NTSC channel number
..for a two-wavelength WDM CATV systems I and II 38
Fig. 4-1 ..The experimental configuration of our proposed
..full-duplex radio-on-PCF transport systems 47
Fig. 4-2 ..The OADM configuration 48
Fig. 4-3 ..(a) The IMD3/C values at various EAM bias voltages
..with and without PCF 49
Fig. 4-3 ..(b) Electrical spectrum of the received signals
..with 2.85-km PCF and 2V EAM bias voltage 49
Fig. 4-4 ..(a) The measured down-link BER curves of
..10.02 GHz (f2)/3-Mb/s data channel 50
Fig. 4-4 ..(b) The measured up-link BER curves of
..10.02 GHz (f2)/3-Mb/s data channel 50
Fig. 5-1 ..Experimental system configuration of our proposed
-directly modulated CATV/ROF transport systems 60
Fig. 5-2 ..The resonance frequency of the DFB LD2 61
Fig. 5-3 ..(a) Measured CNR values under NTSC channel number 62
Fig. 5-3 ..(b) Measured CSO values under NTSC channel number 62
Fig. 5-3 ..(c) Measured CTB values under NTSC channel number 62
Fig. 5-4 ..Measured BER curves of 5.78-GHz/20-Mbps data 63
Fig. 5-5 ..Electrical spectrum of the received signal with
-4.8 dBm light injection, optoelectronic feedback and 3.6 km PCF 64

List of Table

Table 3-1 ..An experimental comparison of CNR/CSO/CTB performances -between PCF and the DCF 39
[1]P. C. Won, and J. A. R.Williams, “Third-order intermodulation products generated on transmission through nonlinear radio-on-fibre link,” Electron. Lett., vol.40, pp. 1290-1291, 2004.
[2]M. G. Larrode, A. M. Koonen, J. J. V. Olmos, and A. Ng’Oma, “Bidirectional radio-over-fiber link employing optical frequency multiplication,” IEEE Photon. Technol. Lett., vol. 18, pp. 241-243, 2006.
[3]J. Capmany, “Multiwavelength single sideband modulation for WDM radio-over-fiber systems using a fiber grating array tandem device,” IEEE Photon.Technol. Lett., vol. 17 , pp. 471-473, 2005.
[4]Y. Okamoto, R. Miyamoto, and M. Yasunaga, “Radio-on-fiber access network systems for road-vehicle communication,” in IEEE Intelligent Transportation Systems Conf. Proc., pp. 1050–1055, 2001.
[5]H. H. Lu, W. S. Tsai, T. S. Chien, S. H. Chen, B. S. Cheng, and C. C. Chen, “A bidirectional radio-on-DWDM transport system for LAN and ITS applications,” IEEE Photon.Technol. Lett., vol. 18, pp. 127-129, 2006.
[6]W. S. Tsai, H. H. Lu, C. P. Chuang, and C, C. Tsai, “Radio-on-DWDM transport systems for PHS/VICS/ETC/SB applications,” in APOC’2006, 6353-101, 2006.
[7]H. H. Lu, “Simultaneous transmission of AM-VSB CATV and internet access signals over the existed multimode fibers in the campus,” Journal of Opt. Commun., vol. 22, pp. 55-58, 2001.
[8]H. H. Lu, “Hybrid AM-VSB/256-QAM WDM system over 70 km of single-mode fiber with praseodymium-doped fiber amplifier,” Opt. Eng., vol. 41, pp. 928-929, 2002.
[9]H. H. Lu, and W. S. Tsai, “Dispersion compensation and crosstalk reduction in a bi-directional DWDM CATV system,” Opt. Eng., vol. 42, pp. 281-284, 2003.
[10]B. Masella and X. Zhang, “A novel single wavelength balanced system for radio-over-fiber links,” IEEE Photon. Technol. Lett., vol. 18, pp. 301-303, 2006.
[11]T. Ismail, C. P. Liu, J. E. Mitchell, “A. J. Seeds, X. Qian, A. Wonfor, R. V. Penty, and I. H. White, Transmission of 37.6-GHz QPSK wireless data over 12.8-km fiber with remote millimeter-wave local oscillator delivery using a bi-directional SOA in a full-duplex system with 2.2-km CWDM fiber ring architecture,” IEEE Photon. Technol. Lett., vol. 17, pp. 1989-1991, 2005.
[12]L.A. Johansson and A. J. Seeds, “36-GHz 140-Mb/s Radio-over-fiber transmission using an optical injection phase-lock loop source,” IEEE Photon. Technol. Lett., vol. 13, pp. 893-895, 2001.
[13]T. Kuri, T. Nakasyotani, H. Toda, and K. Kitayama, “Characterizations of supercontinuum light source for WDM millimeter-wave-band radio-on-fiber systems,” IEEE Photon. Technol. Lett., vol. 17, pp. 1274-1276, 2005.
[14]H. Kwon, Y. Won, and S. Han, “Noise suppressed Fabry–Pérot laser diode with gain-saturated semiconductor optical amplifier for hybrid WDM/SCM-PON link,” IEEE Photon. Technol. Lett., vol. 18, pp. 640-642, 2006.
[15]C. Kim, I. Kim, G. Li, M. R. Lange, T. E. Dimmick, P. Langlois, and B. Reid, “ Optical microwave/millimeter-wave links using direct modulation of two-section gain-coupled DFB lasers,” IEEE Photon. Technol. Lett., vol. 17, pp. 1734-1736, 2005.
[16]A. Kaszubowska, P. Anandarajah, and L. P. Barry, “Improved performance of a hybrid radio/fiber system using a directly modulated laser transmitter with external injection,” IEEE Photon. Technol. Lett., vol. 14, pp. 233–235, 2002.
[17]H. H. Lu, W. S. Tsai, C. Y. Chen, and H. C. Peng, “A-10 Gbps WDM transport system based on VCSELs to VCSELs injection-locked technique and LEAF transport,” Opt. Commun., vol. 241, pp. 105-112, 2004.
[18]H. H. Lu, W. X. Tsai, and C. C. Liu, “Crosstalk reduction by using chirped fiber grating in a two-wavelength WDM transport system,” Conference on Lasers and Electro-Optics (CLEO 2002), CThG4, pp. 463-465, 2002.
[19]D. Piehler, C. Y. Kuo, J. Kleefeld, and C. Gall, “Nonlinear intermodulation distortion in an optically amplified analog video transport system with dispersion compensation fiber,” in ECOC’96, pp. 3217–3220, 1996.
[20]D. I. Kovsh, L. Liu, B. Bakhshi, A. Pilipetskii, E. A. Golovchenko, and N. S. Bergano, “Reducing interchannel crosstalk in long-haul DWDM systems,” IEEE J. Sel. Topics Quantum Electron., vol. 8, pp. 597–602, 2002.
[21]R. Hui, B. Zhu, R. Huang, C. Allen, K. Demarest, and D. Richards, “10 Gb/s SCM system using optical single side-band modulation,” in Optical Fiber Communication, vol. 1 , pp. MM4-1-MM4-4, 2001.
[22]H. H. Lu, W. S. Tsai, H. C. Peng, and Y. J. Ji, “A comparison between optical SSB transmitter/filter in a full-duplex radio-on-fiber transport system,” IEEE Commun. Lett., vol. 9, pp. 649-651, 2005.
[23]T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St.J. Russell, “Dispersion compensation using single-material fibers,” IEEE Photon. Technol. Lett., vol. 11, pp. 674-676, 1999.
[24]L. P. Shen, W. P. Huang, G. X. Chen, and S. S. Jian, “Design and optimization of photonic crystal fibers for broad-band dispersion compensation,” IEEE Photon. Technol. Lett., vol. 15, pp. 540-542, 2003.
[25]H. H. Lu, W. S. Tsai, T. S. Chien, S. H. Chen, Y. C. Chi, and C. W. Liao, “Bidirectional hybrid DWDM-PON for HDTV/Gigabit Ethernet/CATV applications,” Electronics and Telecommunications Research Institute (ETRI) Journal, vol. 29, pp. 162-168, 2007.
[26]C. T. Lin, J. Chen, P. C. Peng, C. F. Peng, W.-R. Peng, B. S. Chiou, and S. Chi “Hybrid optical access network integrating fiber-to-the-home and radio-over-fiber systems,” IEEE Photon. Technol. Lett., vol. 19, pp. 610-612, 2007.
[27]M. Bakaul, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, “Efficient multiplexing scheme for wavelength-interleaved DWDM millimeter-wave fiber-radio systems,” IEEE Photon. Technol. Lett., vol. 17, pp. 2718-2720, 2005.
[28]T. Niiho, H. Sasai, K. Masuda, and S. Morikura, “Radio-on-fiber link using direct modulation in 5-GHz band,” in Int. Topical Meeting Microwave Photonics, pp. 25–28, 2002.
[29]M. Ogusu, K. Inagaki, Y. Mizuguchi, and T. Ohira, “Multiplexing of millimeter-wave signals for fiber-radio links by direct modulation of a two-mode locked Fabry–Perot laser,” IEEE Trans. Microw. Theory Tech., vol. 52, pp. 498–507, 2004.
[30]L. Chrostowski, X. Zhao, C. J. Chang-Hasnain, R. Shau, M. Ortsiefer, and M. C. Amann, “50-GHz optically injection-locked 1.55µm VCSELs,” IEEE Photon. Technol. Lett., vol. 18, pp. 367-369, 2006.
[31]C. L. Tsai, F. M. Lee, F. Y. Cheng, M. C.Wu, S. C. Ko, H. L.Wang, and W. J. Ho, “Silicon oxide-planarized single-mode 850-nm VCSELs with TO package for 10 Gb/s data transmission,” IEEE Electron Device Lett., vol. 26, pp. 304–307, 2005.
[32]E. K. Lau and M. C.Wu, “Amplitude and frequency modulation of the master laser in injection-locked laser systems,” in IEEE Int. Topical Meeting Microwave Photonics, pp. 142–145, 2004.
[33]H. H. Lu, G. L. Chen, Y. W. Chuang, C. C. Tsai, and C. P. Chuang, “Improvement of radio-on-multimode fiber systems based on light injection and optoelectronic feedback techniques,” Opt. Commun., vol. 266, pp. 495-499, 2006.
[34]G. Li, R. K. Boncek, X. Wang, and D. H. Sackett, “Transient and optoelectronic feedback-sustained pulsation of laser diodes at 1300 nm,” IEEE Photon. Technol. Lett., vol. 7, pp. 854-856, 1995.
[35]S. Mohrdiek, H. Burkhard, and H. Walter, “Chirp reduction of directly modulated semiconductor lasers at 10 Gb/s by strong CW light injection,” J. Lightw. Technol., vol. 12, pp. 418-424, 1994.
[36]G. Yabre, “Effect of relatively strong light injection on the chirp-to-power ratio and the 3 dB bandwidth of directly modulated semiconductor lasers,” J. Lightw. Technol., vol. 14, pp. 2367-2373, 1996.
[37]W. I. Way, “Broadband Hybrid Fiber/coax Access System Technologies,” Academic Press, San Diego, 1998.
[38]J. Helms, “Intermodulation and harmonic distortions of laser diodes with optical feedback,” J. Lightw. Technol., vol. 9, pp. 1567-1575, 1991.
[39]H. Ku and J. S. Kenney, “Estimation of error vector magnitude using two-tone intermodulation distortion measurements,” IEEE MTT-S Int. Microwave Symp. Dig., vol. 1, pp. 17–20, 2001.
[40]H. Gebretsadik, H. T. Foulk, N. C. Frateschi, W. J. Choi, S. V. Robertson, A. E. Bond, “Linearised integrated SOA-EA modulator for long-haul and FTTH CATV applications at 1.55μm,” Electron. Lett., vol. 40, pp. 1016-1017, 2004.
[41]C. C. Lee, J. H. Su, Y. K. Chen, F. Y. Tsai, C. S. Wang, Y. K. Tu, S. Chi, “Reduction of cross-phase-modulation-induced crosstalk by usingchirped fiber grating in WDM AM-VSB CATV transmission systems,’’ OFC, San Diego, CA, TuP5, vol. 1, pp. 230-232, 1999.
[42]Y. Ni, L. Zhang, L. An, J. Peng, and C. Fan, “Dual-core photonic crystal fiber for dispersion compensation,” IEEE Photon. Technol. Lett., vol. 16, pp. 1516-1518, 2004.
[43]K. K. Chow, C. Shu, Chinlon Lin, and A. Bjarklev “Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett., vol. 17, pp. 624-626, 2005.
[44]S. Yang, Y. Zhang, X. Peng, Y. Lu, S. Xie, J. Li, W. Chen, Z. Jiang, J. Peng, H. Li,“Theoretical study and experimental fabrication of high negative dispersion photonic crystal fiber with large area mode field,” Opt. Express, vol. 14, pp. 3015-3023, 2006.
[45]B.J. Mangan, F. Couny, L. Farr, A. Langford, P.J. Roberts, D.P. Williams, M. Banham, M.W. Mason, D.F. Murphy, E.A.M. Brown, H. Sabert, T.A. Birks, J.C. Knight, and P.St.J. Russel, “Slope-matched dispersion-compensating photonic crystal fibre,” in Proceedings of Conference on Lasers and Electro-Optics (CLEO 2004), paper CPDD3, San Francisco, CA, vol. 2, pp. 1069-1070, 2004.
[46]H. H. Lu, W. S. Tsai, C. Y. Chen, and H. C. Peng, “CATV/Radio-on-Fiber transport systems based on EAM and optical SSB modulation technique,” IEEE Photon. Technol. Lett., vol. 16, pp. 2565-2567, 2004.
[47]T.-K. Chiang, N. Kagi, T. K. Fong, M. E. Marhic, and L. G. Kazovsky. “Cross-phase modulation in dispersive fibers: theoretical and experimental investigation of the impact of modulation frequency,” IEEE Photon. Technol .Lett., vol. 6, pp. 733-736, 1994.
[48]C. C. Lee and S. Chi, “The improvement of composite triple-beat distortion induced by cross-phase-modulation in wavelength-division-multiplexing CATV transmission systems with chirped fiber grating compensator,” Opt. Commun., vol. 175, pp. 125–134, 2000.
[49]S. Ovadia, “Broadband Cable TV Access Networks: From Technologies to Applications,” Prentice-Hall, 2001.
[50]G. H. Smith, and D. Novak, “Broad-band millimeter-wave (38 GHz) fiber-wireless transmission system using electrical and optical SSB modulation to overcome dispersion effects,” IEEE Photon. Technol. Lett., vol. 10, pp. 141-143, 1998.
[51]M. R. Phillips and D. M. Ott, “Crosstalk caused by nonideal output filters in WDM lightwave systems,” IEEE Photon. Technol. Lett., vol. 12, pp. 1094-1096, 2000.
[52]H. H. Lu, H. H. Huang, H. S. Su, and M. C. Wang, “Fiber optical CATV system-performance improvement by using external light-injection technique,” IEEE Photon. Technol. Lett., vol. 15, pp. 1017-1019, 2003.
[53]Yoshimatsu, T.; Ohno, T.; Doi, Y.; Tsuzuki, K.; Kagawa, T.; Mitachi, S.; “Third-order intermodulation distortion characteristics of a non-biased electroabsorption modulator on fiber-radio system lasers and electro-optics,” CLEO/Pacific Rim 2001. The 4th Pacific Rim Conference, vol 2, pp. 332-333, 2001.
[54]P. Saboureau, J. P. Foing, and P. Schanne, “Injection-locked semiconductor lasers with delayed optoelectronic feedback,” IEEE J. Quantum Electron., vol. 33, pp. 1582-1591, 1997.
[55]C. H. Cox, “Analog Optical Links Theory and Practice,” Cambridge, U.K.: Cambridge Univ. Press, 2004.
[56]K. Feher, “Wireless Digital Communication Modulation and Spread Spectrum Application,” Englewood Cliffs, NJ: Prentice-Hall, 1995.
[57]Z. Jia, J. Yu, and ee-K. Chang, “Full-duplex radio-over-fiber system based on optical carrier suppression and reuse,” IEEE Photon. Technol. Lett., vol. 18, pp. 1726-1728 ,2006.
[58]L. Chen, H. Wen, and S. Wen “A radio-over-fiber system with a novel scheme for millimeter-wave generation and wavelength reuse for up-link connection,” IEEE Photon. Technol. Lett., vol. 18, pp. 2056-2058, 2006.
[59]M. Bakaul, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, “Experimental characterization of single and cascaded WDM optical interfaces in a mm-wave fiber-radio network,” IEEE Photon. Technol. Lett., vol. 18, pp. 115-117, 2006.
[60]J. Yu, Z. Jia, L. Yi, Y. Su, G. K. Chang, and T. Wang “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett., vol. 18, pp. 265-267, 2006.
[61]J. Yu, Z. Jia, L. Xu, L. Chen, T. Wang, and G. K. Chang, “DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver,” IEEE Photon. Technol. Lett., vol. 18, pp. 1418-1420, 2006.
[62]J. H. Seo, Y. K. Seo, and W. Y. Choi “1.244-Gb/s data distribution in 60-GHz remote optical frequency up-conversion systems,” IEEE Photon. Technol. Lett., vol. 18, pp. 1389-1391, 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 3.蔡采秀(1996.12)〈從日治到戰後的臺北(1895-1985)-一個都市性質轉變的歷史過程分析〉《臺灣史研究》第3卷第2期:5-50,台北市:中央研究院臺灣史研究所籌備處
2. 2.林美容(1990.3.31)〈臺灣漢人家庭傳統的兒童社會化〉《臺灣風物》第40卷第1期:67-77,台北縣:臺灣風物雜誌社
3. 1.洪敏麟(1976.9.27)〈纏腳與臺灣的天然足運動〉《臺灣文獻》第27卷第3期:143-157,台中市:臺灣省文獻委員會
4. 36.謝里法(1998.11)《日據時代臺灣美術運動史》台北市:藝術家出版社
5. 6.邱琡雯(2000.6)〈「文化變容」的取徑-殖民史研究的另類觀點〉《當代》第154號:106-117,台北市:合志文化
6. 7.張樹倫(2000.8)〈當前臺灣文化現象的省思〉《人文及社會學科教學通訊》第11卷第2期:60-77,台北市:教育部人文及社會學科教育指導委員會
7. 8.范婷(2000.秋)〈從「波麗路」到「星巴克」-台灣咖啡文化的歷史分析〉《傳播文化》第8期:41-77,台北縣:輔仁大學大眾傳播學研究所
8. 10.張芙美(2001.8)〈日據時期的臺灣衛生事業概況〉《慈濟技術學院學報》第3期:49-84,花蓮市:慈濟技術學院
9. 11.楊明哲(2001.9)〈歷史教學的理念與實際〉《通識教育季刊》第8卷第3期:1-17,新竹市:清華大學通識中心
10. 12.胡志佳(2001.9)〈逢甲大學通識教育中歷史課程設計與實施分析〉《通識教育季刊》第8卷第3期:73-98,新竹市:清華大學通識中心
11. 13.陳能治(2001.9)〈技職體系通識教育歷史課程實施的理想與現實-南台科技大學個案探討〉《通識教育季刊》第8卷第3期:99-129,新竹市:清華大學通識中心
12. 14.劉士永(2001.10)〈「清潔」、「衛生」與「健康」-日治時期臺灣社會公共衛生觀念之轉變〉《臺灣史研究》第8卷第1期:41-88,台北市:中央研究院臺灣史研究所籌備處
13. 19.簡光明(2002.7)〈「通識教育」釋義〉《輔英通識教育年刊》創刊號:19-21,高雄市:春暉出版社
14. 22.顏玉雲(2003.3)〈從後現代主義到後殖民的台灣文化研究〉《人文藝術學報》第2期:55-76,嘉義縣:國立嘉義大學人文藝術學院
15. 28.許玉河(2003.12.31)〈澎湖鸞堂發展史〉《臺灣文獻》第54卷第4期:153-204,南投市:國史館臺灣文獻館
 
系統版面圖檔 系統版面圖檔