(3.231.230.175) 您好!臺灣時間:2021/04/16 02:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:彭湘淳
研究生(外文):Hsiang-Chun Peng
論文名稱:利用色散補償機制改善有線電視傳輸系統的性能
論文名稱(外文):Improved Performance of Fiber-Optic CATV Transport System by Using Dispersion Compensation Scheme
指導教授:曾世杰曾世杰引用關係
指導教授(外文):Shah-Jye Tzeng
口試委員:黃振發賴柏洲呂海涵
口試委員(外文):Jen-Fa HuangPo-Chou LaiHai-Han Lu
口試日期:2007-06-20
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:光電工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:46
中文關鍵詞:外調雷射負色散光纖光單旁波帶濾波器分頻多工技術光子晶體光纖
外文關鍵詞:externally modulated lasernegative dispersion fiberoptical single sideband filtersplit-band techniquephotonic crystal fiber
相關次數:
  • 被引用被引用:0
  • 點閱點閱:89
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
在本篇論文中,我們提出並驗證一建構於分頻多工技術及使用色散補償元件作訊號補償的光纖有線電視傳輸系統,系統性能參數載波雜訊比,同時對於載波二次合成拍差比與載波三次合成拍差比也有不錯的表現。
首先,建構一使用負色散光纖之光纖有線電視傳輸系統。我們提出一外調式NTSC滿載77 頻道,經長距離( 100 km)負色散光纖後,藉由負色散光纖所存在的負色散特性,來克服頭端所產生的擾頻效應,最後能測量出最佳的傳輸品質。
再則,於系統接收端使用單旁波帶濾波器對色散做補償。藉由光纖光柵的窄通帶特性來產生光單旁波形式的光信號。希望可以利用最簡單元件去除因系統長距離傳輸所引起光譜線寬變寬的現象,藉以改善訊號經由系統傳輸後所產生的非線性失真。
最後,我們利用分頻多工技術與短距離的光子晶體光纖 (3.6 km) 進行色散與色散斜率的補償,可以有效應用於多波長的傳輸系統。光信號在經由100 公里標準單模光纖傳送後,系統可獲得良好的光纖有線電視參數性能。
In this thesis, we study the NTSC 77-channel erbium-doped fiber amplifier (EDFA)-repeated system using split-band technique and optical compensation device to improve composite second order (CSO) and composite triple beat (CTB) performances.
First of all, an architecture of an externally modulated AM-VSB CATV transport system in the 1550nm region using negative dispersion fiber (NDF) as the transmission fiber is proposed. To the best of our knowledge, it is the first transmit externally modulated CATV signals maximum up to 80 km NDF without dispersion compensation. This negative dispersion property overcomes the positive frequency chirp and results in system with better transmission performance.
Second, an externally modulated NTSC 77-channel erbium-doped fiber amplifier (EDFA)-repeated system employing fiber Bragg grating (FBG) in combination with an optical circulatior (OC) as an optical SSB filter at the receiving site. The function of the FBG filter is to replace the head-end optical SSB transmitter, not only to simplify the technique, but also to overcome the fiber chromatic dispersion.
Finally, we demonstrate directly-modulated national television system employing split-band technique and photonic crystal fiber (PCF) as a broadband dispersion compensation device. Good performance of CNR, CSO, and CTB were obtained over a combination of 100-km single-mode fiber and 3.6 km PCF.
摘  要…………………………………………………………………i
Abstract ………………………………………………………………ii
誌  謝 ……………………………………………………………iv
Contents………………………………………………………………v
Figure Captions……………………………………………………vii
Chapter 1 Introduction……………………………………………1
1.1 Introduction ……………………………………………………1
1.2 Motivation ……………………………………………………2
1.3 Structure ……………………………………………………3
Chapter 2 Fiber-Optic CATV Transport Systems Parameter and Nonlinear Distortion ………………………………………5
2.1 Fiber-Optic CATV Transport Systems Parameter……… 5
2.1.1 Carrier-to-Noise Radio………………………………… 5
2.1.2 Nonlinear Distortion ………………………………………6
2.1.2.1 Composite Second Order……………………………………7
2.1.2.2 Composite Triple Beat……………………………………7
2.2 Nonlinear Distortion of SMF…………………………………7
2.2.1 Self-Phase Modulation ………………………………………7
2.2.2 Stimulated Brillouin Scattering…………………………8
Chapter 3 Externally Modulated Lightwave CATV Transport Systems Employing Negative Dispersion Fiber ……………13
3.1 Introduction …………………………………………………13
3.2 Experimental Setup……………………………………………14
3.3 Experimental Results and Discussion………………………14
3.4 Summary……………………………………………………………16
Chapter 4 CSO/CTB Performances Improvement by Using Optical SSB Filter at the Receiving Site……………………19
4.1 Introduction……………………………………………………19
4.2 Experimental Setup……………………………………………20
4.3 Experimental Results and Discussion………………………21
4.4 Summary……………………………………………………………24
Chapter 5 Fiber-Optic CATV System Performance Improvement by Using Split-Band Technique and Photonic Crystal Fiber…………………………………………………………………29
5.1 Introduction……………………………………………………30
5.2 Experimental Setup……………………………………………31
5.3 Experimental Results and Discussion………………………33
5.4 Summary……………………………………………………………35
Chapter 6 Conclusions………………………………………………39
References……………………………………………………………41
Publication List……………………………………………………45
[1] E. STRATFORD SMITH, “The Emergence of CATV: A Look at the Evolution of a Revolution ,” Proceedings of the IEEE, vol. 58, pp. 967-981, 1970.
[2] D. Piehler, X. Zou, C. Y. Kuo, A. Nilsson, J. Kleefeld, G. Garcia, J. D. Ralston, and A. Mathur, “55dB CNR over 50 km of fiber in an 80-channel externally-modulated AM-CATV system without optical amplification,” Electron. Lett., vol. 33, pp. 226- 227, 1997.
[3] F. W. Willems, J. C. van der Plaats, and W. Muys “Harmonic distortion caused by stimulated Brillouin scattering suppression in externally modulated lightwave AM-CATV systems,” Electron. Lett., vol. 30, pp. 343-345, 1994.
[4] X. P. Mao, G. E. Bodeep, R. W. Tkach, A. R. Chraplyvy, T. E. Darcie and R. M Derosier “Brillouin scattering in externally modulated lightwave AM-VSB CATV transmission systems,” IEEE Photon. Technol. Lett., vol. 4, pp. 287-289, 1992.
[5] G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron., vol. 25, pp. 2297-2306, 1989.
[6] D. Piehler, C. Y. Kuo, J. Kleefeld, and C. Gall, “Nonlinear intermodulation distortion in an optically amplified analog video transport system with dispersion in an optically amplified analog video transport system with dispersion compensation fiber,” Eur. Conf. Opt. Commun. (ECOC’96), WeP. 02, pp. 3217-3220, 1996.
[7] S. Barcelos, N. Z. Michael, and I. L. Richard “Characteristics of Chirped Fiber Gratings for Dispersion Compensation,” Opt. Fiber Technol., vol. 2, pp. 213-215, 1996.
[8] G. N. Lars, N. K. Stig, E. Bent, T. Veng, M. Dorte, C. C. Larsen, and D. Hans, “Dispersion Compensating Fibers,” Opt. Fiber Technol., vol. 6, pp. 164-180, 2000.
[9] H. H. Lu, “Performance Comparison Between DCF and RDF Dispersion Compensation in Fiber Optical CATV Systems,” IEEE Trans. on Broadcasting, vol. 48, pp. 370-373, 2002.
[10]H. H. Lu, “CSO/CTB performances improvement by using optical VSB modulation technique,” IEEE Photon. Technol. Lett., vol. 14, pp. 1478-1480, 2002.
[11] H. H. Lu, C. T. Lee, and C. J. Wang, “Dispersion compensation in externally modulated transport system using chirped fiber grating as well as large effective area fiber,” Opt. Eng., vol. 40, pp. 656-657, 2001.
[12]W. I. Way, Broadband Hybrid Fiber/Coax Access System Technologies, Academic Press, pp. 34, 1999.
[13] W. I. Way, Broadband hybrid fiber/coax access system technologies, Academic Press, pp. 372, 1999.
[14] X. P. Mao, R. W. Tkach, A. R. Chraplyvy, R. M. Jopson, and R. M. Derosier, “Stimulated Brillouin threshold dependence on fiber type and uniformity,” IEEE Photon. Technol. Lett., vol. 4, pp. 66-69, 1992.
[15] M. R. Philips, T. E. Darcie, D. Marcuse, G. E. Bodeep, and N. J. Frigo, “Nonlinear distortion generated by dispersive transmission of chirped intensity-modulated signals,” IEEE Photon. Technol Lett., vol. 3, pp. 481-483, 1991.
[16]G. H. Smith, D. Novak, and Z. Agmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microwave Theory Tech., vol. 45, pp. 1410-1415, 1997.
[17] H. S. Chung, Y. G. Jang, and Y. C. Chung, “Directly modulated 10-Gb/s signal transmission over 320 km of negative dispersion fiber for regional metro network,” IEEE Photon. Technol. Lett., vol. 15, pp. 1306-1308, 2003.
[18] H. H. Lu, H. L. Ma, and C. T. Lee, “A bi-directional hybrid DWDM system for CATV and OC-48 trunking,” IEEE Photon. Technol. Lett., vol. 13, pp. 902-904, 2001.
[19] S. Ovadia, and C. Lin, “Performance characteristics and applications of hybrid multichannel AM-VSB/M-QAM video lightwave transmission systems,” J. Lightwave Technol., vol. 16, pp. 1171-1185, 1998.
[20]G. H. Smith, and D. Novak, “Broad-band millimeter-wave (38 GHz) fiber-wireless transmission system using electrical and optical SSB modulation to overcome dispersion effects,” IEEE Photon. Technol. Lett., vol.10, pp. 141-143, 1998.
[21]G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microwave Theory Tech., vol. 45, pp. 1410-1415, 1997.
[22] Y. K. Chen, Y. L. Liu, and C. C. Lee, “Directly modulated 1550 nm AM-VSB video EDFA-repeated supertrunking system over 110 km standard singlemode fiber using split-band and wavelength division multiplexing techniques,” Electron. Lett., vol. 33, pp. 1400-1401, 1997.
[23] R. A. Griffrin, P. M. Lane, and J. J. O’Reilly, “Optical amplifier noise figure reduction for optical single-sideband signals,” J. Lightwave Technol., vol. 17, pp. 1793-1796, 1999.
[24]S. Ovadia, Broadband Cable TV Access Networks: Form Technologies to Applications, Upper Saddle River, NJ:Prentice-Hall, ch. 6, pp. 165-169, 2001.
[25]M. R. Philips, T. E. Darcie, D. Marcuse, G. E. Bodeep, and N. J. Frigo, “Nonlinear distortion generated by dispersive transmission of chirped intensity-modulated signals,” IEEE Photon. Technol. Lett., vol. 3, pp. 481-483, 1991.
[26]W. I. Way, Broadband Hybrid Fiber/Coax Access System Technologies, San Diego, CA: Academic, ch. 2, pp. 33-37, 1999.
[27] C.C. Lee, and S. Chi, “The improvement of composite triple-beat distortion induced by cross-phase-modulation in wavelength-division-multiplexing CATV transmission systems with chirped fiber grating compensator,” Opt. Commun., vol. 175, pp. 125- 134, 2000.
[28] D. Piehler, X. Zou, C.Y. Kuo, A. Nilsson, J. Kleefeld, G. Garcia, J.D. Ralston, and A. Mathur, “55 dB CNR over 50 km of fibre in an 80-channel externally-modulated AM-CATV system without optical amplification,” Electron. Lett., vol. 33, pp. 226- 227, 1997.
[29] Y. Ni, L. Zhang, L. An, J. Peng, and C. Fan, “Dual-core photonic crystal fiber for dispersion compensation,” IEEE Photon. Technol. Lett., vol. 16, pp. 1516-1518, 2004.
[30] B. Zsigri, C. Peucheret, M.D. Nielsen, and P. Jeppesen, “Transmission over 5.6 km large effective area and low-loss (1.7 dB/km) photonic crystal fiber,” Electron. Lett., vol. 39, pp. 796-798, 2003.
[31] B. Jes, M. Dmitri, E. B. Stig, and B. Anders, “Photonic Crystal Fibers: A New Class of Optical Waveguides,” Opt. Commun., vol. 5, pp. 305-330, 1999.
[32] H. H. Lu, H. H. Huang, H. S. Su, and M. C. Wang, “Fiber optical CATV system- performance improvement by using external light-injection technique,” IEEE Photon. Technol. Lett., vol. 15, pp.1017-1019, 2003.
[33]Y. K. Chen, Y .L. Liu, and C. C. Lee, “Directly modulated 1.55μm AM-VSB video EDFA-repeatered supertrunking system over 110 km standard singlemode fibre using split-band and wavelength division multiplexing techniques,” Electron. Lett., vol. 33, pp. 1400-1401, 1997.
[34] L. P. Shen, W. P. Huang, G. X. Chen, and S. S. Jian, “Design and optimization of photonic crystal fibers for broad-band dispersion compensation,” IEEE Photon. Technol. Lett., vol. 15, pp. 540-542, 2003.
[35] B. Clesca, P. Bousselet, and L. Hamon, “Second-order distortion improvements or degradations brought by erbium-doped fiber amplifiers in analog links using directly modulated lasers,” IEEE Photon. Technol. Lett., vol. 5, pp. 1029-1031, 1993.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔