(3.235.41.241) 您好!臺灣時間:2021/04/15 05:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:潘建良
研究生(外文):Jian-Liang Pan
論文名稱:InGaAs太陽能電池元件的製作與分析
論文名稱(外文):Fabrication and analysis of InGaAs solar cell device
指導教授:何文章何文章引用關係
口試委員:陳隆建吳志宏辛華煜
口試日期:2007-07-13
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:光電工程系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:55
中文關鍵詞:太陽能電池砷化銦鎵磷化銦理想因子飽和電流歐姆接觸特徵接觸電阻率串連電阻
外文關鍵詞:solar cellInGaAsInPideality factorreverse saturation currentohmic contactspecific contact resistivityseries resistance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:170
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要對InGaAs材料的太陽能電池元件方面做探討。由於InGaAs太陽能電池有高的表面復合速率,所以在磊晶結構方面我們在InGaAs上方增加一層InP的窗層來降低表面復合。我們利用Transmission Line Model (TLM)方式得到低的特徵接觸電阻率(specific contact resistivity)約2.24×10-5 Ω-cm2之AuBe/Cr/Au金屬和p-InP形成的歐姆接觸。所以,此太陽能電池元件之正面電極利用金屬AuBe/Cr/Au和p-InP窗層形成歐姆接觸(型式一)。此外我們也研究在有InP窗層情況下,利用金屬Ti/Pt/Au當成正面電極與p+-InGaAs發射層作接觸的太陽電池結構(型式二)。我們比較這兩種不同型式的結構。型式一結構之開路電壓(Voc)、短路電流(Isc)、填充因子(FF)、轉換效率(η)分別為0.342 V、4.32 mA、0.584、6.01%;而型式二結構之開路電壓(Voc)、短路電流(Isc)、填充因子(FF)、轉換效率(η)分別為0.24 V、4.56 mA、0.647、4.9%。型式一結構之開路電壓較型式二之開路電壓增加了42.5%,因此轉換效率高於型式二22.65%。最後,我們也利用理工軟體 ‘Origin’ 分析出太陽電池內部的等效串聯電阻、二極體理想因子、飽和電流。
The subject of this thesis is the device fabrication and performance analysis of InGaAs solar cell. Due to high surface recombination velocity of a small band gap of InGaAs layer, using a wide band gap InP window layer grown upon InGaAs layer to reduce the surface recombination. By using Transmission Line Model (TLM) to investigate the ohmic contact of electrode metal and InP semiconductor. We got a low specific contact resistively (ρc) of 2.24×10-5 Ω-cm2 of the AuBe/Cr/Au contact to p-InP. So, the process of manufacturing the front electrode of InGaAs solar cell by using AuBe/Cr/Au (type-I) for an ohmic contact to the p-type InP window layer. In additional, we also investigated the InGaAs solar cell with an InP window layer by using Ti/Pt/Au (type-II) as the front electrode directly contact to P+ -InGaAs emitter layer. Two types of InGaAs solar cell structures have been designed and we compared the results of two different processes. The corresponding open-circuir voltage, short-circuit current, fill factor and conversion efficiency of type-I cell and type-II cell are 0.342 V、4.32 mA、0.584、6.01%, 0.24 V、4.56 mA、0.647、4.9%, respectively. An increase of 42.5% in open-circuit voltage for type one is observed. As a result, the efficiency of the type-I cell is higher than that of the type-II cell by 22.65%. The series resistance (Rs), the ideality factor (n) and the reverse saturation current (Io) of both cells have been estimated.
Chinese Abstract...........................................................................................i
English Abstract...........................................................................................ii
Acknowledgements.....................................................................................iii
Contents......................................................................................................iv
Table Captions.............................................................................................vi
Figure Captions..........................................................................................vii
Chapter 1 Introduction……………………………………………………......1
Chapter 2 Solar Cell Operation Principles…………………………………….3
2.1 Basics…………...........................................................................3
2.1.1 The Solar Spectrum…………………………………………3
2.1.2 Energy of a photon………………………………………….4
2.1.3 Absorption of Light…………………………………………5
2.1.4 Material Absorption Coefficient and Absorption Depth……6
2.2 Ideal Solar Cells………………………………………………...7
2.2.1 Solar Cell Structure…………………………………………7
2.2.2 Light Generated Current…………………………………….8
2.3 Solar Cell Parameters…………………………………………...9
2.3.1 IV Curve…………………………………………………….9
2.3.2 Short-Circuit Current………………………………………10
2.3.3 Open-Circuit Voltage………………………………………11
2.3.4 Fill Factor…………………………………………………..11
2.3.5 Conversion Efficiency……………………………………...12
2.4 Resistive Effects………………………………………………..12
2.4.1 Effects of Parasitic Resistances…………………………….12
2.4.2 Analysis of Parasitic t Resistance…………………………..14
Chapter 3 Design and Fabrication Process of InGaAs Solar Cell Device……...16
3.1 Device Structure Design…………………………………………16
3.2 Device Fabrication Process………………………………………19
Chapter 4 Result and Discussion………………………………………………..32
4.1 Low Specific Contact Resistivity Ohmic Contact Scheme to
p- and n-type InP………………………………………………...32
4.2 Compare the Two Types of InGaAs Solar Cell Performance …...38
4.2.1 Dark and Photo I-V Characteristics………………………….38
4.2.2 Determination of the Series Resistance……………………...46
Chapter 5 Conclusion and Future Works………………………………………….50
References…………………………………………………………………………...51
Appendix…………………………………………………………………………….53
[1] D. M. Chapin, C. S. Fuller, and G. L. Pearson, “A New Silicon p-n junction Photocell for Converting Solar Radiation into Electrical Power,” J. Appl. Phys., 25, 676 (1954).
[2] D. C. Raynolds, G. Leies, G. Leies, L. L. Antes, and R. E. Marburger,“Photovoltaic Effect in Cadmium Sulfide,” Phys. Rev., 96, 533 (1954).
[3] K. W. J. Barnham, I. Ballard, J. G. Connolly, N. Ekins-Daukes, B. G. Kluftinger, J. Nelson, and C. Rohr, “Recent results on quantum well solar cells,” J. Mater. Sci.: Mater. Electron., vol. 11, no. 7, pp. 531–536, 2000.
[4] D. M. Wilt and N. S. Fatemi, “High efficiency indium gallium arsenide photovoltaic devices for thermophotovoltaic power systems ,”Appl. Phys. Lett. 64 2415 (1994).
[5] S. Wojtczuk, S. Vernon, and E. Gagnon, in Proceedings of the 12th Space Photovoltaic Research and Technology (SPRAT] Conference, NASA, Cleveland, OH, p. 119, 1992.
[6] 黃鼎偉,Chapter 5 photodetectors,光電導論,第10頁。
[7] van Dye E, Meyer EL. Analysis of the effect of parasitic resistances on the performance of photovoltaic modules. Renew Energy; 29, 333, 2004.
[8] GL. Araujo and E. Sanchel, “A new method for experimental determination of the series resistance of a solar cell,” IEEE Trans. Electron Devices, vol. ED-29, pp.1511-1513, Mar. 1982.
[9] M. Wolf and H. Rauschenbach, “Series resistance effects on solar cell measuremen-
ts,” in Adv. Energy Conv., vol. 3, pp. 455-479, April-June 1963.
[10] K. Rajkanan and J. Shewchun, “A better approach to the evaluation of the series
resistance of solar cells,” Solid-State Electron., vol. 22, pp. 193-197, 1979.
[11] S. Hwang, J. Shim, Y. Eo, “Ohmic contacts of Pd/Zn/M(=Pd or Pt)/Au to p-Type InP,” J. Korean Phys. Soc. 46, 751 (2005).
[12] A. Katz, B. E.Weir and W. C. Dautremont-Smith, “Au/Pt/Ti contact to p-In0.53Ga0.47As and n-InP layers formed by a single metallization common step and rapid thermal processing,” J. Appl. Phys. 68(3), 1123 (1990).
[13] T. C. Hasenberg and E. Garmire, “An improved Au/Be contact to p-type InP” J.Appl. Phys. 61(2), 808 (1986).
[14] Dieter K. Schroder, semiconductor material and device characterization, 2nd ed. John Wiley & Sons, Inc, Canada, 149(1998).
[15] 許仕,Chapter 6 檢光器,正修科技大學,6-1。
[16] C. Y. Kim, J. H Cha, J. Kim and Y. S. Kwon, “Open-Circuit Voltage Improvement in InGaAs/InP Heterojunction Solar Cells,” Jpn. J. Appl. Phys., Vol. 44, No. 4B (2005)
[17] A. G. Aberle, S. R. Wenham and M. A. Green "A new method for accurate measurements of the lumped series resistance of solar cells", IEEE Trans. Electr. Dev. 29, 821, 1993.
[18] Martin A. Green, SOLAR CELLS Operating Principles, Technology, and System Applications, Prentice-Hall, Inc, Englewood Cliffs, N. J., 96(1982).
[19] M. Radike and J. Summhammer, “Electrical and Shading Power losses of Decorati-
ve PV Front Contact Patternsl,” PROGRESS IN PHOTOVOLTAICS: RESEARCH
AND APPLICATIONS, Prog. Photovolt: Res. Appl. 7, 399~407 (1999)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔