(3.236.231.14) 您好!臺灣時間:2021/04/15 08:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張哲瀚
研究生(外文):Zhe-han Zhang
論文名稱:積體光學電光調變表面電漿共振生化感測器
論文名稱(外文):Integrated-Optic Biosensor Based on Electro-Optically Modulated Surface Plasmon Resonance
指導教授:王子建
口試委員:張淑美江海邦
口試日期:2007-07-31
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:光電工程系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:98
中文關鍵詞:表面電漿共振生化感測器電光效應積體光學馬赫任德干涉器
外文關鍵詞:surface plasmon resonancebiosenserelectro-optic effectintegrated opticsMach-Zehnder interferometer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:98
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出新型之積體光學電光調變表面電漿共振生化感測器,其利用鈮酸鋰晶片的電光效應,對待測物的表面電漿共振特性進行電光調變,以檢測生化物質之濃度。所提出的新型表面電漿共振感測器,感測區所使用的表面電漿激發層分別由金膜和奈米金粒沈積在金膜上所構成。在感測區上方,應用自組裝薄膜技術,鍵結人血清球蛋白於表面電漿激發層上,形成生化感測層,能夠即時檢測出治療心臟疾病之藥物-乙型阻斷劑的濃度。在感測器之量測上,藉由外加電壓於生化感測器的電極上,經由電光效應調變表面電漿共振特性,使得輸出光的強度或相位受到調變,其中在相位變化的部份,是藉由干涉的方式將其轉換成強度的變化,然後量測輸出光強度隨外加電壓變化關係之回歸直線斜率值,以檢測待測物之濃度。實驗結果顯示,利用奈米金粒子的表面積效應,來增加人血清球蛋白在奈米金粒表面的覆蓋面積,可提高感測器的靈敏度,敏感度最高可達到6.22×10-3 V-1∙ppm-1。相較於一般的表面電漿共振感測器,其具有:敏感度高、準確性高、檢測速度快、操作容易、體積小等優點,未來若與其他多樣化之功能性元件整合在單一晶片上,可進一步縮小系統之體積,並達到大量平行檢測的目的。
In this study, we present a novel integrated-optic biosensor based on electro-optically modulated surface-plasmon-resonance (SPR). The proposed SPR biosensor utilizes electro-optic effect in lithium niobate to modulate SPR properties of sensing material and can be used to measure the concentration of biochemical material. Two kinds of the layers for exciting surface plasmon, gold film and gold nanoparticles, are adopted in the sensor, respectively. Human serum albumin (HSA) produced by the self-assembling method is used as the biolayer and can be used to real time sense the concentration of beta-blocker, which is a kind of medicine for heart disease. During the sensor measurement, the SPR intensity and phase can be tuned by electro-optic effect. The variation of analyte-dependent SPR phase is converted to the intensity variation by interference. The concentration of the sensing material can be detected by the linear regression slope of the relation between the output intensity and the applied voltage. Because of the surface effect of nanoparticles, gold nanoparticles used on the biosensor can increase the surface coverage of human serum albumin and thus the detection sensitivities of the presented sensor. Experimental results show the achievable sensitivity of the proposed biosensor is 6.22×10-3 V-1∙ppm-1. In comparison with the conventional SPR sensor, the proposed SPR sensor has many advantages, such as: high sensitivity, high accuracy, fast measurement speed, easy operation, and system miniaturization.
中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 3
1.3 文獻回顧 4
1.4 論文概述 6
第二章 表面電漿共振(SPR)原理與生化檢測原理 7
2.1 表面電漿波簡介 7
2.2 表面電漿波之激發原理 8
2.3 利用耦合器激發表面電漿共振 13
2.3.1 衰逝全反射架構耦合器 13
2.3.2 光柵耦合器 15
2.3.3 光波導耦合器 17
2.4 生化檢測原理 18
第三章 積體光學電光調變SPR感測器之操作原理與元件設計 19
3.1 鈮酸鋰之材料特性 19
3.2 積體光學電光調變SPR生化感測器操作原理 25
3.2.1 電光調變SPR強度生化感測器操作原理 25
3.2.2 電光調變SPR相位生化感測器操作原理 27
3.3 金屬擴散式鈮酸鋰光波導之特性 30
3.4 金屬擴散式鈮酸鋰光波導之折射率分佈 31
3.5 積體光學電光調變SPR生化感測器之元件設計 34
3.5.1 具有Y分岔結構的電光調變SPR強度生化感測器 34
3.5.2 具有Mach-Zehnder結構的電光調變SPR相位生化感測器
37
第四章 積體光學電光調變SPR生化感測器之製作 41
4.1 金屬擴散式鈮酸鋰光波導製程步驟 41
4.2 積體光波導特性量測 47
4.3 積體光學電光調變SPR生化感測器之製程 50
4.4 奈米金粒之合成與選區固定 54
4.4.1 奈米金粒合成 55
4.4.2 奈米金粒選區固定 56
4.5 人血清球蛋白自組裝薄膜技術 58
4.6 乙型阻斷劑溶液調配 61
4.7 元件特性量測系統 61
第五章 結果與討論 64
5.1 使用金膜之電光調變SPR強度生化感測器元件特性 64
5.1.1 波導寬度之效應 64
5.1.2 金膜厚度之效應 66
5.2 使用金膜之電光調變SPR相位生化感測器元件特性 69
5.2.1 波導寬度之效應 69
5.2.2 感測長度之效應 72
5.2.3 金膜厚度之效應 75
5.3 使用奈米金粒之電光調變SPR相位生化感測器元件特性 77
5.3.1 波導寬度之效應 77
5.3.2 感測長度之效應 80
5.3.3 金膜厚度之效應 84
第六章 結論 87
參考文獻 89
中英文名詞對照表 93
附錄:發表於2006年台灣光電科技研討會之論文 96
[1]A.P.F. Turner, I. Karube, G.S. Wilson, Biosensors: Fundamentals and Applications, Oxford University Press, 1987.
[2]R.W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Phil. Magm., vol. 4, pp. 396-402, 1902.
[3]E. Kretschmann, “The determination of the optical constants of metals by excitation of surface plasmons,” Z. Phys, vol. 241, pp. 313-324, 1971.
[4]A. Otto, “Excitation of surface plasma waves in silver by the method of frustrated total reflection,” Z. Physik, vol. 216, pp. 398-410, 1968.
[5]B. Liedberg, C. Nylander, and I. Lundström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuator B, vol. 4, pp. 299-304, 1983.
[6]K. Matsubara, S. Kawata, S. Minami, “Optical chemical sensor based on surface plasmon measurement,” Appl. Opt, Vol. 27, pp. 1160-1163, 1988.

[7]J.J. Cowan, E.T. Arakawa, “Dispersion of surface plasmons in multiple metal and dielectric layers on concave diffraction gratings,” Phys. Status Solidi A, Volume 1,pp. 695-705, 1970.
[8]J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B, vol. 54, pp. 3-15, 1999.
[9]J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem., vol. 377, pp. 528–539, 2003.
[10]B. Chadwick, and M. Gal, “An optical temperature sensor using surface plasmons,” Jpn. J. Appl. Phys., vol. 32, pp. 2716–2717, 1993.
[11]J. Melendez, R. Carr, D. Barthelomew, H. Taneja, S. Yee, C. Jung, and C. Furlong, “Development of a surface plasmon resonance sensor for commercial applications,” Sens. Actuators B, vol. 39, pp. 375–379, 1997.
[12]K.S. Johnston, S.R. Karlson, C. Jung, and S.S. Yee, “New analytical technique for characterization of thin films using surface plasmon resonance,” Mater. Chem. Phys., vol. 42, pp. 242–246, 1995.
[13]S.G. Nelson, K.S. Johnston, and S.S. Yee, “High sensitivity surface plasmon resonance sensor based on phase detection,” Sens. Actuators B, vol. 35, pp. 187-191, 1996.
[14]C.M. Wu, Z.C. Jian, and S.F. Joe, “High-sensitivity sensor based on surface plasmon resonance and heterodyne interferometry,” Sens. Actuators B, vol. 92, pp. 133-136, 2003.
[15]A.V. Kabashin and P.I. Nikitin, “Surface plasmon resonance interferometer for bio- and chemical-sensors,” J. Opt. Comm., vol. 150, pp. 5-8, 1998.
[16]A. Otto, “Excitation of surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys., vol. 216, pp. 398-410, 1968.
[17]A.V. Kabashin, V.E. Kochergin and P.I. Nikitin, “Surface plasmon resonance bio- and chemical sensors with phase-polarisation contrast,” Sens. Actuators B, vol. 54, pp. 51-56, 1999.
[18]X.M. Zhu, P.H. Lin, P. Ao, and L.B. Sorensen, “Surface treatment for surface plasmon resonance biosensors,” Sens. Actuators B, vol. 84, pp. 106-112, 2002.
[19]H.P. Ho, S.Y. Wu, M. Yang, and A.C. Cheung, “Application of white light-emitting diode to surface plasmon resonance sensors,” Sens. Actuators B, vol. 80, pp. 89-94, 2001.
[20]N.M. Mulchan, M. Rodriguez, and K.O. Shea, “Application of a high-resolution SPR technique for monitoring real-time metal/dielectric interactions,” Sens. Actuators B, vol. 88, pp. 132-137, 2003.
[21]L.A. Lyon, M.D. Musick, and P.C. Smith, “Surface plasmon resonance of colloidal Au-modified gold films,” Sens. Actuators B, vol. 54, pp. 118-124, 1999.
[22]S.Y. Jong, S.H. Jung, J.W. Jung, D.G. Hong, J.A. Han, Y.M. Kim, and K.S. Ha, “Analysis of protein interactions on protein arrays by a wavelength interrogation-based surface plasmon resonance biosensor,” Proteomics, vol. 4, pp. 3468-3476, 2004.
[23]R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B, vol. 12, pp. 213-220, 1993.
[24]M.N. Weiss, R. Sriiastava, H. Groger, P. Lo, and S.F. Luo, ”A theoretical investigation of environmental monitoring using surface plasmon resonance waveguide sensors,” Sens. Actuators A, vol. 51, pp. 211-217, 1996.
[25]M.N. Weiss, R. Sriiastava, and H. Groger, “Experimental investigation of a surface plasmon-based integrated-optic humidity sensor,” Electron. Lett., vol. 32, pp. 842-843, 1996.
[26]H. Raether, “Surface plasmon on smooth and rough surfaces and on gratings,” Germany, Springer-Verlag, pp. 1-12, 1988.
[27]J. Čryroký, J. Homola, P.V. Lambeck, S. Musa, H.J.W.M. Hoekstra, R.D. Harris, J.S. Wilkinson, B. Usievich, and N.M. Lyndin, “Theory and modeling of optical waveguide sensors utilizing surface plasmon resonance,” Sens. Actuators B, vol. 54, pp. 66-73, 1999.
[28]R.W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Proc. Phys. Soc. London, pp. 269-275, 1902.
[29]J. Homola, I. Koudela, S.S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B, vol. 54, pp. 16-24, 1999.
[30]R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B, vol. 12, pp. 213-220, 1993.
[31]A. Ahluwalia, G. Giusto, and D.D. Rossi, “Non-specific adsorption on antibody surfaces for immunosensing,” Mater. Sci. Eng., vol. C3, pp. 267-271, 1995.
[32]T. Suzuki, O. Eknoyan, and H. F. Taylor, “Electrooptic coefficient measurement on LiNbO3,” J. Lightwave Tech., Vol. 11, pp. 285-289, 1993.
[33]
C. S. Tsai, “Guided-wave acoustoopitc bragg modulators for wide-band integrated optic communication and signal processing,” IEEE trans. On Circuit and Sys., vol. 26, pp. 1072-1098, 1979.
[34]M. N. Armenise, “Fabrication techniques of lithium niobate waveguide,” IEEE Proc., vol. 135, no. 2, pp. 85-91, 1988.
[35]E. Zolotysbko, Y. Avrahami, W. Sauer, and J. Peisl, “High-temperature phase transformation in Ti-diffused waveguide layers of LiNbO3,” Appl. Phys. Lett., vol. 73, no. 10, pp. 1352-1354, 1998.
[36]Y.P. Liao, D.J. Chen, R.C. Lu, and W. S. Wang, “Nickel-diffused lithium niobate optical waveguide with process-dependent polarization,” IEEE Photon. Tech. Lett., vol. 8, pp. 548-550, 1996.
[37]S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters,” J. lightwave technol., vol. LT-5, no.5, pp. 700-708, 1987.
[38]T. Zhu, X. Fu, T. Mu, J. Wang, and Z. Liu, “PH-Dependent adsorption of gold nanoparticles on p-Aminothiophenol-modified gold substrates,” Langmuir, vol.15, pp. 5197-5199, 1999.
[39]W.H. Scouten, J.H.T. Luong, and R.S. Brown, “Enzyme or protein immobilization techniques for applications in biosensor design,” Trends biotechnol., vol. 13, pp. 178-185, 1995.
[40]R.C.J. Horton, T.M Herne, and D.C. Myles, “Aldehyde-terminated self-assembled monolayers on gold: immobilization of amines onto gold surfaces,” J. Am. Chem. Soc., vol. 119, pp. 12980-12981, 1997.
[41]D.L. Allara, “Critical issues in applications of self-assembled monolayers,” Biosens. bioelectron., vol. 10, pp. 771-783, 1995.
[42]S. Ferretti, S. Paynter, D.A. Russell, K.E. Sapsford, and D.J. Richardson, “Self-assembled monolayers: a versatile tool for the formulation of bio-surface,” Trends anal. chem., vol. 19, pp. 530-540, 2000.
[43]A. Ulman, An introduction to ultrathin organic films : from lanmuir-blodgett to self-assembly, Boston, Academic, pp. 237 1991.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔