(3.237.20.246) 您好!臺灣時間:2021/04/15 12:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃益豪
研究生(外文):Yi-Hao Huang
論文名稱:高峰值功率主動式Q-開關光纖雷射
論文名稱(外文):High Peak-Power Active Q-Switched Fiber Laser
指導教授:王子建
口試委員:張世軍林志平王維新
口試日期:2007-07-20
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:光電工程系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:69
中文關鍵詞:光纖雷射鉺鐿共摻雜雙重披覆層光纖雷射Q-開關聲光Q-開關
外文關鍵詞:fiber lasererbium-ytterbium co-doped double cladding fiber laserQ-switchacousto-optic Q-switch
相關次數:
  • 被引用被引用:1
  • 點閱點閱:191
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究主動式Q-開關的鉺鐿共摻雜光纖雷射,在共振腔結構上使用線性共振腔結構來建構光纖雷射,在脈衝產生的機制上應用聲光調制器來作為Q開關,以產生短脈衝的雷射光。為了得到高峰值功率的雷射光輸出,所採用的線性共振腔是由對1550nm光具有高反射的反射鏡以及光纖垂直端面的反射所構成,脈衝壓縮上是採用聲光調制器作為Q-開關,實驗中分別使用三種不同的鉺鐿共摻雜雙重披覆層光纖當作增益介質,並且分別討論幫浦光功率、脈衝重複率以及光纖長度等參數,對於脈衝峰值功率和脈衝寬度的影響。實驗結果顯示,提高幫浦光功率、降低脈衝重複率,有助於提高脈衝的峰值功率以及縮短脈衝寬度。在最佳峰值功率的情況下,使用長度為9公尺的極化保持大模態面積鉺鐿共摻雜雙重披覆層光纖之主動式Q-開關光纖雷射,在脈衝重複率為0.1kHz、幫浦光功率為7W時,可得到峰值功率高達22.69kW、脈衝寬度為13ns的雷射脈衝。
In this work, an active Q-switched erbium-ytterbium co-doped double cladding fiber laser is studied. In the experiment, the linear cavity structure is used and the acousto-optic modulator is utilized as a Q-switch. The high-peak power Q-switched fiber laser adopts the linear cavity formed by the reflection mirror with high reflectivity at 1550nm and the perpendicular fiber end. In the pulse compression process, the acousto-optic modulator is used as the Q-switch to produce the pulse with short duration. This studies uses three kind of erbium-ytterbium co-doped double cladding fiber as gain medium. The effects of pump power, pulse repetition rate, and erbium-doped fiber length on the pulse properties, including pulse peak power and pulse duration, are discussed. Experimental results show that high pump power and low repetition rate facilitate the enhancement of pulse peak power and reduction of pulse duration. Under the condition of optimal pulse peak power, the pulse with peak power of 22.69kW and pulse duration of 13ns is produced in the active Q-switched fiber laser using erbium-ytterbium co-doped large-mode-area double cladding fiber length of 9m with repetition rate of 0.1kHz and pump power of 7W.
中文摘要 i

英文摘要 ii

誌謝 iii

目錄 iv

表目錄 vi

圖目錄 vii

第一章 緒論 1
1.1光纖雷射簡介 1
1.2高功率光纖雷射簡介 4
1.3文獻回顧 6
1.4研究動機及目的 7
1.5論文概述 8
第二章 光纖雷射理論及技術 9
2.1光放大原理 9
2.1.1光激發原理 9
2.1.2鉺離子放大原理 10
2.1.3鉺鐿共摻雜離子激發原理 12
2.2摻鉺光纖放大器原理與理論 13
2.3摻鉺光纖雷射原理與理論 16
2.4 Q-開關原理 18
2.5 Q-開關摻鉺光纖雷射技術 21
第三章 高功率光纖雷射之架構26
3.1 連續波模式 26
3.2 脈衝模式 27
3.3 幫浦光耦合 29
第四章 結果與討論 31
4.1鉺鐿共摻雜雙重披覆層光纖雷射 31
4.1.1 ASE光譜和連續波雷射輸出特性 32
4.1.2幫浦光功率對脈衝能量的影響 35
4.1.3幫浦光功率對脈衝特性的影響 36
4.1.4脈衝重複率和高Q值週期對脈衝特性的影響 37
4.1.5討論 39
4.2極化保持鉺鐿共摻雜雙重披覆層光纖雷射 40
4.2.1 ASE光譜和連續波雷射輸出特性 41
4.2.2 幫浦光功率對脈衝能量的影響 44
4.2.3幫浦光功率對脈衝特性的影響 45
4.2.4 脈衝重複率對脈衝特性的影響 46
4.2.5討論 47
4.3極化保持大模態面積鉺鐿共摻雜雙重披覆層光纖雷射 49
4.3.1 ASE光譜和連續波雷射輸出特性及輸出光場分布 49
4.3.2 幫浦光功率對脈衝能量的影響 52
4.3.3幫浦光功率對脈衝特性的影響 53
4.3.4脈衝重複率和高Q值週期對脈衝特性的影響 54
4.3.5討論 56
第五章 結論及未來展望 58
參考文獻 59
中英文名詞對照表 64
附錄:
發表於2006年台灣光電科技研討會之論文 67
[1]A. Carter, B. Samson, K. Tankala, D. Machewirth, U. Manyam, J. Abramczyk, J. Farroni, D. Guertin and N. Jacobson, “The road to kilowatt fiber lasers,” Proceedings of SPIE, vol. 5350, pp. 172-182, 2004.
[2]Y. Shiquan, Z. C. Liu, M. Hongyun, D. Lei, D. Xiaoyi, Y. shuzhong, K. guiyun and Z. Qida, “Wavelength tunable erbium-doped fiber ring laser operating in L-band,” Optical and Quantum Electronics, vol. 35, pp. 69-73, 2003.
[3]F. D. Teodoro, “Megawatt peak-power pulsed fiber sources,” Proceedings of SPIE, vol. 6261, pp. 62611N, 2006.
[4]K. Zoiros, T. Stathopoulos, K. Vlachos, A. Hatziefremidis, T. Houbavlis, T. Papakyriakopoulos and H. Avramopoulos, “Experimental and theoretical studies of a high repetition rate fiber laser, mode-locked by external optical modulation,” J. Opt. Comm., vol. 180, pp. 301-315, 2000.
[5]B. Shiner, “Fiber lasers for material processing,” Proceedings of SPIE, vol. 5706, pp. 60-68, 2005.
[6]Y. O. Barmenkov, A. V. Kir’yanov, J. Mora, J. L. Cruz and M. V. Andrés, “Continuous-wave and giant-Pulse operations of a single-frequency erbium-doped fiber laser,” IEEE Photon. Tech. Lett., vol. 17, no. 1, pp. 28-30, 2005.
[7]A. Cucinotta, S. Dallargine, S. Selleri, C. Zilioli and M. Zoboli, “Modeling of erbium doped fiber ring laser,” J. Opt. Comm., vol. 140, pp. 21-24, 1997.
[8]Y. O. Barmenkov and A. V. Kir’yanov, “Pump noise as the source of self-modulation and self-pulsing in erbium fiber laser,” Opt. Express, vol. 12, no. 14, pp. 3171-3177, 2004.
[9]S. Yamashita and M. Nishihara, “Widely tunable erbium-doped fiber ring laser covering both C-band and L-band,” J. Quantum Electronics, vol. 7, no. 1, pp. 41-13, 2001.
[10]Q. Mao and J. W. Y. Lit, “L-band erbium-doped fiber ring laser with a wide tuning range,” Opt. Lett., vol.39, no.4, pp. 304-307, 2003.
[11]J. Nilsson, J. D. Minelly, R. Paschotta, A. C. Tropper and D. C. Hanna, "Ring-doped cladding-pumped single-mode three-level fiber laser," Opt. Lett., vol. 23, pp. 355-357, 1998.
[12]P. Yan, W. Zhang, Y. Li, J. Zhu, L. Ding, S. Chen and K. L. S. Dong, “Large mode area Yb3+-doped photonic crystal fiber laser,” Proceedings of SPIE, vol. 5623, pp.890-894, 2005.
[13]S. Selvakennedy, M. A. Mahdi, M. K. Abdullah, P. Poopalan and H. Ahmad1, “Study of mode selection in erbium-doped fiber ring laser cavity through a numerical approach,” Opt. Lett., vol. 25, no. 3, pp.187-191, 2000.
[14]P. Even and D. Pureur, “High power double clad fiber lasers: a review,” Proceedings of SPIE, vol. 4638, pp.1-12, 2002.
[15]K. Furusawa, T. Kogure, J. K. Sahu, J. H. Lee, T. M. Monro and D. J. Richardson, “Efficient low-threshold lasers based on an erbium-doped holey fiber,” IEEE Photon. Tech. Lett., vol. 17, no. 1, pp.25-27, 2005.
[16]A. F. El-Sherif and T. A. King, “Analysis and optimization of Q-Switched operation of a Tm3+-doped silica fiber laser operating at 2um,” J. Quantum Electronics, vol. 39, no. 6, pp. 759-765, 2003.
[17]J. Swiderski, P. Konieczny, A. Zajac, M. Skorczakowski and P. Nyga, “Pulsed fiber laser generating at 1064 nm,” Proceedings of SPIE, vol. 5484, pp.396-399, 2004.
[18]Y. X. Fan, F. Y. Lu, S. L. Hu, K. C. Lu, H. J. Wang, X. Y. Dong and G. Y. Zhang, “105-kW peak-power double-clad fiber laser,” IEEE Photon. Tech. Lett., vol. 15, no. 5, pp. 652-654, 2003.
[19]H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippenl, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” J. Quantum Electronics, vol. 31, no. 3, pp. 591-598, 1995.
[20]Y. Shuzhong, L. Fuyim, G. Chmfeng, L. Yujie, F. Xinhuan, W. Zhenxing and F. Yaxian, “All fiber Q-switched laser,” Proceedings of SPIE, vol. 3552, pp. 45-48, 1998.
[21]R. R. Rojo, M. Mohebi and D. Tentori, “Study of the onset of self-pulsing behaviour in an Er-doped fibre laser,” Proceedings of SPIE, vol. 2730, pp. 340-343, 1996.
[22]B. Ortaç, A. Hideur, M. Brunel and G. Martel, “High repetition rate high power femtosecond fiber laser,” Proceedings of SPIE, vol. 6102, 610225, 2006.
[23]C. C. Renaud, H. L. Offerhaus, J. A. Alvarez-Chavez, J. Nilsson, W. A. Clarkson, P. W. Turner, D. J. Richardson and A. B. Grudinin, “Characteristics of Q-Switched cladding-pumped ytterbium-doped fiber lasers with different high-energy fiber designs,” J. Quantum Electronics, vol. 37, no. 2, pp. 199-206, 2001.
[24]P. S. Golding, S. D. Jackson, P. K. Tsai, B. C. Dickinson and T. A. King, “Efficient high power operation of a Tm-doped silica fiber laser pumped at 1.319 μm,” J. Opt. Comm., vol. 175, pp.179-183, 2000.
[25]D. Y. Shen, J. K. Sahu and W. A. Clarkson, “Highly efficient in-band pumped Er:YAG laser with 60 W of output at 1645 nm,” Opt. Lett., vol. 31, no. 6, pp. 754-756, 2006.
[26]M. Sejka and C. V. Poulsen, “High repetition rate Q-switched ring laser in Er3+-doped fiber,” Opt. Fiber Technology, vol. 1, pp. 167-170, 1995.
[27]V. N. Filippov, A. N. Starodumov and A. V. Kir’yanov, “All-fiber passively Q-switched low-threshold erbium laser,” Opt. Lett., vol. 26, no. 6, pp. 343-345, 2001.
[28]V. Reichel, S. Unger, V Hagemann, H. R. Muller, M. Auerbach, “8 W highly-efficient Yb-doped Fiber-Laser,” Proceedings of SPIE, vol. 3889, pp. 160-169, 2000.
[29]M. Salhi, H. Leblond, F. Sanchez, “High power tunable all fiber double-clad Er:Yb:silicate fiber laser,” J. Opt. Comm., vol. 247, pp. 181-185, 2005.
[30]L. B. Fu, M. Ibsen, D. J. Richardson, J. Nilsson, D. N. Payne, and A. B. Grudinin, “Compact High-Power Tunable Three-Level Operation of Double Cladding Nd-Doped Fiber Laser,” IEEE Photon. Tech. Lett., vol. 17, no. 2, pp. 306-308, 2005.
[31]A. Martınez-Rios, R. Selvas-Aguilar, I. Torres-Gomez, F. Mendoza-Santoyo, H. Po, A.N. Starodumov, Y. Wang, “Double-clad Yb3+-doped fiber lasers with virtually non-circular cladding geometry,” J. Opt. Comm., vol. 180, pp. 385-392, 2005.
[32]Y. Jeong, J. K. Sahu, D. N. Payne, J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express, vol. 12, no. 25, pp. 6088-6092, 2004.
[33]S. Hongxin, G. Qinglin, L. Kecheng, “Study on the output characteristics of a large-core Yb-doped double clad fiber laser,” Proceedings of SPIE, vol. 5627 pp. 453-460, 2005.
[34]P. Myslinski, J. Chrostowski, “High power Q-switched erbium doped fiber laser,” J. Quantum Electronics, vol. 28, no. 1, pp. 371-377, 1992.
[35]A. Hideur, T. Chartier, S. Louis, M. Brunel and F.Sanchez, “High power double-clad Yb-doped fiber laser,” Proceedings of SPIE, vol 4751, pp 510-520, 2002.
[36]T. Sumiyoshi, H. Sekita, T. Arai, S. Sato, M. Ishihara and M. Kikuchi, “High-power continuous-wave 3- and 2- μm cascade Ho3+ :ZBLAN fiber laser and its medical applications,” J. Quantum Electronics, vol. 5, no. 4, pp. 936-943, 1999.
[37]S. Nissila and J. Kostamovaara, “A fibre laser as the pulse source for a laser rangefinder system,” Proceedings of SPIE, vol. 1821, pp. 375-383, 1992.
[38]P. Varming, J. Hubner and M. Kristensen, “DFB fiber laser as source for optical communication systems,” Conference on Optical Fiber Communication Technical Digest Series, pp. 169, 1997.
[39]S. Tanaka, T. Ogawa, W. Thongnum, N. Takahashi and S. Takahashi, “Thermally stabilized fiber-Bragg-grating vibration sensor using erbium-doped fiber laser,” Jpn. J. Appl. Phys., vol. 42, pp. 3060-3062, 2003.
[40]Y. G. Han, T. V. A. Tran, S. H. Kim and S. B. Lee, “Development of a multi wavelength Raman fiber laser based on phase-shifted fiber Bragg gratings for long-distance remote-sensing applications,” Opt. Lett., vol. 30, no. 10, pp. 1114-1116, 2005.
[41]J. Willson and J. Hawkes, Optoelectronics, Harlow, Prentice Hall, pp. 171-172, 1998.
[42]T. Manzur and S. Bastien, “High power fiber laser/amplifier present & future,” Proceedings of SPIE, vol. 3945, pp. 240-257, 2000.
[43]C. J. Koester and E. Snitzer, “Amplification in a fiber laser,” Appl. Opt., vol. 3, no. 10, pp. 1182-1186, 1964
[44]C. Randy Giles and E. Desurvire, “Modeling Erbium-Doped Fiber Amplifiers,” J. Lightwave Tech., vol. 18, no. 2, pp. 271-283, 1991.
[45]D. L. Veasey, J. M. Gary, J. Amin and J. A. Aust, “Time-dependent modeling of erbium-doped waveguide lasers in lithium niobate pumped at 980 and 1480 nm,” J. Quantum Electronics, vol. 33, no. 10, pp. 1647-1997, 1997.
[46]C. Cheng, “A global design of an erbium-doped fiber and an erbium-doped fiber amplifier,” Optics and Laser Tech., vol. 36, pp. 607-612, 2004.
[47]E. Snitzer and R. Woodcock, “Yb3+ Er3+ Glass Laser,” Appl. Phys. Lett., vol. 6, no. 3, pp. 45-46, 1965.
[48]W. L. Barnes, S. B. Poole, J. E. Townsend, L. Reekie, D. J. Taylor; D. N. Payne, “Er3+-Yb3+ and Er3+ doped fiber lasers,” J. Lightwave Tech., vol. 7, no. 10, pp. 1461-1465, 1989.
[49]M. J. F. Digonnet, Rare earth doped fiber laser and amplifiers, New York, Marcel Dekker Inc., pp.183-187, 1993.
[50]M. J. F. Digonnet, Rare earth doped fiber laser and amplifiers, New York, Marcel Dekker Inc., pp.208-212, 1993
[51]丁勝懋,雷射工程導論,台北市:中央出版社,1995,第377-379頁
[52]W. T. Silfvast, Laser fundamentals, U.S.A, Cambridge, pp. 356-358, 1999.
[53]J. Limpert, N. Deguil-Robin, S. Petit, I. Manek-HOnninger, F. Salin, P. Rigail, C. Honninger and E. Mottay, “High power Q-switched Yb-doped photonic crystal fiber laser producing sub-10 ns pulses,” Appl. Phys. B, vol. 81, pp. 19–21, 2005.
[54]C. C. Renaud, R. J. Selvas-Aguilar, J. Nilsson, P. W. Turner, and A. B. Grudinin, “Compact high-energy Q-switched cladding-pumped fiber laser with a tuning range over 40 nm,” IEEE Photon. Tech. Lett., vol. 11, no. 8, pp. 976-978, 1999.
[55]D. J. Coleman, T. A. King, D. K. Ko and J. Lee, “Q-switched operation of a 2.7 μm cladding-pumped Er3+/Pr3+ codoped ZBLAN fibre laser,” J. Opt. Comm., vol. 236, pp. 379-385, 1994.
[56]F. Qamar and T. A. King, “Short-pulse, high-peak-power Q-switched Tm–silica fibre laser at 1.9 μm,” Optics and Laser Tech., vol. 38, pp. 1-7, 2006.
[57]A. F. El-Sherif and T. A. King, “High-energy, high-brightness Q-switched Tm3+-doped fiber laser using an electro-optic modulator,” J. Opt. Comm., vol. 218, pp. 337-344, 2003.
[58]C. P. Poole Jr, The physics handbook, Canada, Wiley, pp. 333, 1998.
[59]D. Zalvidea, N. A. Russo, R. Duchowicz, M. D. Pinar, A. Dı’ez, J.L. Cruz and M.V. Andre’s, “High-repetition rate acoustic-induced Q-switched all-fiber laser,” J. Opt. Comm., vol. 244, pp. 315-319, 2005.
[60]P. Myslinski, J. Chrostowski, J. A. Koningstein and J. R. Simpson, “High power Q-switched erbium doped fiber laser,” J. Quantum Electronics, vol. 28, no. 1, pp. 371-377, 1992.
[61]Y. Huo and P. K. Cheo, “Modeling of passively Q-switched Er3+/Yb3+-codoped clad-pumped fiber lasers,” J. Quantum Electronics, vol. 11, no. 3, pp. 658-666, 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔