(3.236.228.250) 您好!臺灣時間:2021/04/20 00:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:汪秉宏
研究生(外文):Pin-Hung Wang
論文名稱:SiO2•nH2O在水熱反應中的相轉變
論文名稱(外文):Phase transformation in the hydrothermal reaction of SiO2•nH2O
指導教授:王玉瑞王玉瑞引用關係
指導教授(外文):Yuh-Ruey Wang
口試委員:陳惠芬謝耀南張裕煦余炳盛
口試日期:2007-06-08
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:材料科學與工程研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:89
中文關鍵詞:水矽鈉石斜水矽鈉石石英水熱法水玻璃
外文關鍵詞:magadiitekenyaitequartzhydrothermalwater glass
相關次數:
  • 被引用被引用:1
  • 點閱點閱:184
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究之目的在於探討silica xerogel、magadiite、kenyaite、cristobalite、quartz間相轉變的情形,並以水熱合成法在短時間內嘗試合成單一相且結晶性良好的magadiite、kenyaite、cristobalite和quartz。本研究以價錢低廉的水玻璃加入稀鹽酸沉澱出非晶質SiO2.nH2O作為起始原料,再與NaOH + Na2CO3和水一起進行水熱反應,反應溫度為160 ℃ ~ 200 ℃之間。並改變下列參數:礦化劑的含量、有無添加催化劑等,來探討反應溫度及時間對相轉變之影響。
研究的結果顯示:隨著反應溫度的提高,本水熱系統中礦物的相轉變速率變快,相對的所需反應的時間減低。又相轉變的速率亦隨著氫氧化鈉溶液濃度的增加而加速。然而,在未添加催化劑(Na2CO3)之SiO2•nH2O-H2O-NaOH系統中,亦可快速合成出單一相的magadiite、kenyaite與quartz,且相轉變的速率略為變慢。以掃描式電子顯微鏡分析結果顯示,magadiite晶體呈現由許多平板團聚似玫瑰花之外形,kenyaite晶體則呈現似平板狀之外形,而quartz則為似稜柱狀之外形。
In order to synthesize well-crystallized Na-magadiite, Na-kenyaite, cristobalite and quartz as a single phase in short reaction time and explore the transformation of an amorphous silica into crystalline phase, we use hydrous silica precipitated from water glass with dilute HCl in aqueous dispersions of NaOH and Na2CO3 and carry out in a stainless steel autoclave in the various reaction time and molar ratios of reactants at 160 ~ 200 ℃ under autogenous pressure.
The related phenomena have been investigated, in the course of which- depending on the temperature, run duration, concentration of mineralizers-quite, catalytic agents added or not, to observe transformation of different reaction phase from amorphous silica to quartz.
The results show that as temperature increases, the speed of phase transformation increases and the reaction time decreases, respectively. In addition, as the concentration of mineralizers increase the phases transform get fast.
目 錄

摘 要 i
ABSTRACT ii
誌 謝 iii
目 錄 iv
表目錄 v
圖目錄 vii
第一章 緒 論 1
1.1 前言 1
1.2 研究目的 3
第二章 文獻回顧 4
2.1 矽酸鹽化合物 4
2.2 SiO2-H2O水熱反應之相轉換 9
第三章 研究原理及方法 14
3.1 水熱合成法 14
3.1.1 概述 14
3.1.2 水熱法原理 15
3.1.3 水熱法反應機構 15
3.1.4 水熱法反應介質的性質[25] [28] [29] 18
3.1.5 影響水熱法反應的因素[25] ~ [31] 19
3.1.6 水熱法之優、缺點[25] ~ [31] 20
3.2 實驗藥品與儀器 21
3.3 SiO2•nH2O的製備 32
3.4 生成物的製備 35
第四章 實驗結果與討論 36
4.1反應溫度及時間對礦物相轉變的影響 36
4.2 催化劑(Na2CO3)對礦物相轉變的影響 53
4.3 鹼性溶液濃度對礦物相轉變的影響 64
第五章 結論 82
未來研究工作 84
參考文獻 85
參考文獻

[1] Theng, B.K.G., (1974) The Chemistry of Clay–Organic Reactions: Adam Hilger, London.
[2] Lagaly, G., (1979) Crystalline silicic acids and their interface reactions: Adv. Colloid Interface Sci., 11, 105–148.
[3] Landis, M.E.; Aufdembrink, B.A.; Chu, P.; Johnson, I.D.; Kirker, G.W.; Rubin, M.K., (1991) Preparation of molecular sieves from dense, layered metal oxides: J. Am. Chem. Soc., 113, 3189–3190.
[4] Dailey, J.S.; Pinnavaia, T.J., (1992) Silica pillared derivatives of Hq-magadiite, a crystalline hydrated silica: Chem. Mater., 4, 855–863.
[5] Okutomo, Shinobu; Kuroda, Kazuyuki; Ogawa, Makoto, (1999) Preparation and characterization of silylated-magadiites: Applied Clay Science 15, 253-264.
[6] Guo, Ying; Wang, Yao; Yang, Qing-Xin; Li, Guo-Dong; Wang, Cheng-Shan; Cui, Zhan-Chen; Chen, Jie-Sheng, (2004) Preparation and characterization of magadiite grafted with an azobenzene derivative: Solid State Science 6, 1001-1006.
[7] Du, G. Z., (1997) High-strength microporous paints: Faming Zhuanli Shenqing Gongkai Shuomingshu, CN 1144244, 3pp.
[8] 莊萬發,(1994) 超微粒子理論應用,復漢出版社,共160頁。
[9] Duval, R.; Kadri, E. H., (2000) Influence of fine and ultrafine particles on the heat of hydration and the compressive strength of cement mortars: Struct. Mater., 9, 105-114.
[10] 黃怡楨 譯,G. Klein ﹠C. S. Hurlbut, Jr. 原著,(2000) 礦物學,地球科學文
教基金會發行。
[11] Eugster, H.P., (1967) Hydrous sodium silicates from Lake Magadii, Kenya: precursors of bedded chert: Science 157, 1177-1181.
[12] Kosuge, K.; Yamazaki, A.; Tsunashima; Otsuka, A. R., (1992) Hydrothermal syntheses of magadiite and kenyaite: Journal of the Ceramic Society of Japan, 100, 3, 326-331.
[13] Fletcher, Ross A.; Bibby, David M., (1987) Synthsis of kenyaite and magadiite in the presence of various anions: Clays & Clay Minerals, 35, 4, 318-320.
[14] Fangxia, Feng; Kenneth, J.; Balkus, Jr., (2003) Synthesis of kenyaite, magadiite and octosilicate using poly(ethylene glycol) as a template: Journal of Porous Materials, 10, 5-15.
[15] Kwon, Oh-Yun; Park, Kyeong-Won, (2004) Synthesis of layered silicates from sodium silicate solution: Bull. Korean Chem. Soc, 25, 1.
[16] Wang, Yuh-Ruey; Wang, Sea-Fue; Chang, Li-Chung, (2006) Hydrothermal synthesis of magadiite: Clay Applied Science 33, 73-77.
[17] Bettermann, Peter; Liebau, Friedrich, (1975) The transformation of amorphous silica to crystalline silica under hydrothermal conditions: Contrib. Mineral. Petrol. 53, 25-36.
[18] Beneke, Klaus; Lagaly, Gerhard, (1983) Kenyaite-synthesis and properties: American Mineralogist, 68, 818-826.
[19] Muraishi, Haruto, (1989) Crystallization of silica gel in alkaline solutions at 100 to 180℃:Characterization of SiO2-Y by comparison with magadiite: American Mineralogist, 74, 1147-1151.
[20] Kwon, Oh-Yun; Jeong, Soon-Yong; Suh, Jeong-Kwon; Lee, Jung-Min, (1995) Hydrothermal syntheses of Na-magadiite and Na-kenyaite in the Presence: Bulletin of Kaorean Chem, 16, 8, 737-741.
[21] Muraishi, Haruto, (1995) Experimental study of amorphous silica crystallization in Na2CO3-NaHCO3 solutions as a source of chert formation in lake magadiite: Bull. Chem. Soc. Jpn., 68, 3027-3033.
[22] Korytkova, E. N.; Chepik, L. F.; Mashchenko, T. S.; Drozdova, I. A.; Gusarov, V. V., (2002) Effects of the starting material and hydrothermal treatment conditions on the crystallization of ultrafine silica: Inorganic Materials, 38, 3, 227-235.
[23] 李麗君,(2003)。奈米石英之合成研究。國立台灣大學地質科學研究所博士論文。
[24] Schwieger, Wilhelm; Lagaly, Gerhard, (2004) Alkali silicates and crystalline silicic acids: Handbook of Layered Materials, 541-629.
[25] 徐如人,(2004) 無機合成與製備化學,五南圖書出版股份有限公司,177-226。
[26] 柯揚船,(2004) 聚合物-無機奈米複合材料,五南圖書出版股份有限公司。
[27] Laudise, R.A.; Carruthers, J.R.; Jackson, K.A., (1971) Crystal growth: Annu. Rev. Mater. Sci., 1, 253-88.
[28] 姚連增,(1995) 晶體生長基礎,中國科學技術大學出版社。
[29] 張克從,(1997) 晶體生長科學與技術,科學出版社, 249-335。
[30] 劉海濤,(2003) 無機材料合成,化學工業出版社,459-479。
[31] 張克立,(2004) 無機合成化學,武漢大學出版社,148-151。
[32] 孫逸民,(1997)儀器分析,全威圖書有限公司。
[33] 汪建民,(1998)材料分析,中國材料科學學會。
[34] Dietzel, Martin, (2000) Dissolution of silicates and the stability of polysilicic acid: Geochimica et Cosmochimica Acta, 64, 19, 3275-3281.
[35] 張麗瓊,(2005)。以水熱法合成奈米黏土礦物。中國地質學會九十四年年
會暨學術研討會。
[36] Kosuge, Katsunori; Tsunashima, Atsumu, (1996) Dispersion of H-magadiite and H-kenyaite particles by ion exchange of H+ with alkali ions: Langmuir, 12, 1124-1126.
[37] Bertone, Jane F.; Cizeron, Joel; Wahi, Rajeev K.; Bosworth, Joan K.; Colvin, Vicki L., (2003) Hydrothermal synthesis of quartz nanocrystals: Nano Letters, 3, 5, 655-659.
[38] Corwin, By J. F.; Herzog, A. H.; Owen, G. E.; Yalman, R. G.; Swinnerton, A. C., (1952) The mechanism of the hydrothermal transformation of silica glass to quartz under isothermal conditions: Chemistry and Geology, 29, 3933-3935.
[39] Ostwald, W., (1897) Studien uber die bildung und umwandlung fester korper: Zeitschrift fur Physikalische Chemie, 22, 289-330.
[40] Campbell, A. S.; Fyfe, W. S., (1960) Hydroxyl ion catalysis of the hydrothermal crystallization of amorphous silica; a possible high temperature pH indicator: American Mineralogist, 45, 465-468.
[41] Yanagisawa, K.; Zhu, Y.; Onda, A.; Kajiyoshi, K., (2004) Hydrothermal synthesis of mono-dispersed quartz powders: Journal of Materials Science 39, 2931-2934.
[42] Volosov, A. G..; Kodakovskiy, I. L.; Ryzhenko, B. N., (1972) Equilibria in the system SiO2-H2O at elevated temperatures along the lower three-phase curve: Geochem. Internatl., 9, 362-377.
[43] Zener, C., (1949) Theory of growth of solid precipitates from solid solution: J. Appl. Physics, 20, 950.
[44] Bayliss, P.; Levinson, A. A., (1971) Low temperature hydrothermal synthesis from dolomite or calcite, quartz and kaolinite: Clays and Clay Minerals, 19, 109-114.
[45] Hosaka, Masahiro, (1991) Synthesis of micro α-quartz crystals by hydrothermal hot-press method: Journal of Crystal Growth, 112, 291-293.
[46] Schwieger, W.; Werner, P.; Bergk, K. H., (1991) A new synthetic layered silicate of type metal silicate hydrate: Colloid & Polymer Science, 269, 1071-1073.
[47] Baughman, R.J., (1991) Quartz crystal growth: Journal of Crystal Growth 112, 753-757.
[48] Kim, Christopher S.; Yates, Douglas M.; Heaney, Peter J., (1997) The layered sodium silicate magadiite: an analog to smectite for benzene sorption from water: Clays & Clay Minerals, 45, 6, 881-885.
[49] Iwasaki, Fumiko; Iwasaki, Hideo; Okabe Yuko, (1997) Growth rate anisotropy of synthetic quartz grown in Na2CO3 solution: Journal of Crystal Growth 178, 648-652.
[50] Dietzel, Martin; Letofsky-Papst, Ilse, (2002) Stability of magadiite between 20 and 100℃: Clays and Clay Minerals, 50, 5, 657-666.
[51] Balitsky, V.S.; Kurashige, M.; Balitskaya, L.V.; Iwasaki, H., (2002) Kinetics of dissolution and state of silica in hydrothermal solutions of Na2CO3 and NaOH, and accelerated method for the quartz crystal characterization against growth rate: Journal of Crystal Growth 237, 828-832.
[52] Zhu, Y.; Yanagisawa, K.; Onda, A.; Kajiyoshi, K., (2005) The preparation of nano-crystallized cristobalite under hydrothermal conditions: Journal of Materials Science 40, 3829-3831.
[53] 陳力俊,(1990)材料電子顯微鏡學,全華科技圖書股份有限公司。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔