(3.230.76.48) 您好!臺灣時間:2021/04/13 14:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊鴻璋
研究生(外文):Hung - Chang Yang
論文名稱:YAG:Ce3+螢光粉與其靶材之製備以及光激發光特性之研究
論文名稱(外文):Synthesis and Photoluminescence of Y3Al5O12:Ce3+ Phosphors and Its Target
指導教授:徐開鴻
口試委員:陳適範唐自標陳克紹
口試日期:2007-06-23
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:材料科學與工程研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:97
中文關鍵詞:螢光體YAG白光LED助熔劑固態反應法靶材
外文關鍵詞:PhosphorYAGWhite-light LEDSolid-state methodTarget
相關次數:
  • 被引用被引用:0
  • 點閱點閱:281
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摻雜鈰之釔鋁石榴石螢光體的放射波長約為535nm,為藍光激發之白光LED用螢光粉,由於具有良好的熱穩定性及光轉換效率,是目前製作白光LED最常用的材料。本研究係以氧化鋁、氧化釔、氧化鈰與助熔劑氟化鋁等起始原料混合,再應用固態反應法於溫度1100℃~1500℃、時間2~8小時下燒成YAG:Ce3+ 螢光粉,從實驗結果中得知在還原性氣氛下、溫度1200℃時間4小時即可合成純相YAG:Ce3+螢光粉,再將螢光粉進行螢光光譜儀檢測,得到吸收波長為340nm與470nm分別為4f(2F5/2) →5d(2B1g)以及4f(2F5/2) →5d(2A1g)之電子躍遷產生,而最強的放射峰為535nm,屬於黃綠光範圍。最後將合成之螢光粉壓製成靶材生胚,探討燒結溫度對燒結體緻密化的影響,由結果得知,採用含雜相的YAG:Ce3+ 螢光粉體,以185MPa壓力成型之生胚,於1400℃/10h的燒結可得燒結相對密度98.1%的最佳化。
Yttrium aluminum garnet phosphor doped Ce3+ ion has yellow-white emitting light , better chemical stability , excellent optical and high temperature mechanical properties which also can combine the blue light to yield white light.
The YAG:Ce3+ phosphors was synthesized by solid-state reaction method. The precursor calcined at 1100℃~1500℃, 2~8 hrs then analysis by XRD and Spectrofluorophotometer. The experiment result shows the temperature and time of pure YAG:Ce3+ for calcinations is 1200℃、4hr and there are two peaks in its excited spectrum, the major one is a broad band around 470 nm, which matches the blue emission very well. The emission peak located at about 535 nm which is the typical 5d→4f transition of Ce3+ and in the wavelength rang of yellow to green light. Using the YAG:Ce3+ phosphors to shape into green and researched the sintering temperature effect on densification of target. The results show that impure YAG:Ce3+ phosphors can obtain fine relative density (98.1%) at 1400℃/10h after compacting in 185MPa.
中文摘要 i
英文摘要 ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 xii

第一章 緒論 1
1.1 前言 1
1.2發光材料的類型 3
1.3發光材料之應用 4
1.4 白光LED介紹 8
1.5研究目的 12
第二章 基礎理論 13
2.1 發光原理 13
2.1.1 螢光體能量的激發與吸收 13
2.1.2 螢光放射和非輻射放射 15
2.1.3 稀土離子發光特性 17
2.1.4 電子於稀土離子能階躍遷行為 18
2.2 螢光材料的組成與設計 19
2.2.1螢光體發光性質的影響 23
2.3 螢光體發光特性的測量 25
2.3.1放射光譜的量測 25
2.3.2色度座標 26
2.4燒結理論與機制 29
2.4.1 Coble燒結模式 29
2.4.2 基本燒結擴散機構 31
2.4.3 晶粒成長行為 33
2.5影響燒結之粉體因素 35
2.5.1堆積效應 35
2.5.2孔洞效應 37
第三章 釔鋁石榴石螢光材料及文獻回顧 39
3.1氧化鋁-氧化釔相圖 39
3.2 釔鋁石榴石螢光粉 40
3.3 文獻回顧 45
第四章 實驗方法與步驟 47
4.1 實驗起始藥品 47
4.1.2 儀器設備 47
4.2 粉末及靶材的製備 47
4.2.1 混合與煆燒 48
4.2.2 加壓成型與燒結 48
4.3 特性分析 48
4.3.1 晶體結構分析 48
4.3.2 顯微結構觀察 49
4.3.3 螢光光譜分析 49
4.3.4 靶材密度測量 49
第五章 結果與討論 56
5.1 純相Y3Al5O12母體的合成 56
5.1.1 Y3Al5O12之熱性 56
5.1.2 XRD結構 57
5.1.2.1 未添加助熔劑合成YAG母體 57
5.1.2.2 添加助熔劑合成YAG母體 61
5.1.2.3 不同比例的助熔劑對煆燒的影響 25
5.2 YAG:Ce3+ 螢光體 64
5.2.1 XRD結構 64
5.2.2 YAG:Ce3+ 螢光粉之發光特性 65
5.2.2.1 YAG:Ce3+螢光體之螢光光譜 65
5.2.2.2 不同濃度Ce3+對發光特性的影響 67
5.2.2.3 不同煆燒溫度對發光特性的影響 68
5.2.2.4 CIE 色度座標 70
5.3 YAG:Ce3+螢光粉之顯微結構 71
5.3.1 能量分散能譜 74
5.4 YAG:Ce3+靶材壓製 75
5.4.1 純相YAG:Ce3+ 對燒結之影響 75
5.4.2 含雜相之YAG:Ce3+ 對燒結之影響 83
5.4.2.1 不同溫度對緻密化影響 83
5.4.2.2 持溫時間對緻密化之影響 86
第六章 結論 91
參考文獻 92
[1]David Green, Ph.D., P.Eng. Miruska Milanovic, B.Eng. Carmanah Technologies Inc. Victoria, LED Technology for Improved Conspicuity of Signal Light at Highway-Railway Grade Crossings BC(2003).
[2]林宸生、陳德請,近代光電工程導論,台灣:全華科技出版社,第5-7頁(2006)。
[3]王明發,YAG螢光粉體的製備及其性質,碩士論文,南台科技大學化學工程研究所,台南(2004)。
[4]徐敘瑢、蘇勉曾主編,發光學與發光材料,大陸:化學工業出版社,第3-4頁(2004)。
[5]Phosphor members committee (Ed) , Phosphors Handbook, Tokyo: OHM Society(1987).
[6]楊俊英,電子產業用螢光材料之調查,經濟部產業科技資訊服務計畫(1992).
[7]B.N.Figgis(Ed) , Introduction to Ligand Fields, Western Australia(1975).
[8]黃乾佑,以固態鋁源合成釔鋁石榴石螢光粉及其特性之研究,碩士論文,台北科技大學材料及資源工程研究所,台北,第6-11頁(2006)。
[9]宋心琦、周福添,光化學,發光過程動力學和量子產率,第120頁(2004)。
[10]G. Blasse and B.C Grabmaier, “Luminescent Materials”, Springer Verlag, Berlin Heidelberg, Germany(1994).
[11]R. C. Ropp, “The Chemistry of Artificial Lighting Devices”, Elsevier, New York,(1993).
[12]徐開鴻,發光材料特論,台北:國立台北科技大學,第26-27 頁(2003)。
[13]C. R. Ronda, T. Justel, H. Nikol, “Rare earth phosphors:fundamentals and applications,” Journal of Alloys and Compounds, vol. 275-277, pp. 669-676(1998).
[14]Shigeo Shionoya, William M. Yen, “Phosphor handbook”, CRC Press LLC, New York, USA (1998).
[15]R. C. Ropp,“Luminescence and solid state” , Elsevier Science Publishers, B. V., The Netherlands(1991).
[16]J.A. DeLuca, “An introduction to luminescence in inorganic solids”, J. Chem. Educ. 57, 8, 541 (1980)
[17]J. A. DeLuca, J. Chem. Educ. 57, 8, 541(1980).
[18]吳健康編著“數位影像分析”儒林圖書公司,(1992)。
[19]F. J. Avella, “The Cathodoluminescence of Terbium Activated Indium Orthoborate”J. Electrochem. Soc. 113, 1225(1966).
[20]R. Jagannathan, S.P. Manoharan, R. P. Rao, R. L. Narayanan and N. Rajaram, “Colour Coordinates of Some Photoluminescent Materials” Bull. Electrochem. 4, 597(1988).
[21]J. S. Hirchhorn, “Introduction to powder metallurgy” American Powder Metallurgy Institute, pp.158(1969).
[22]R. L. Coble, “Sintering Crystalline Solids: II, Experimental Test of Diffusion Models in Powder Compacts,” J. Appl. Phys., 32, 793-799(1961).
[23]R. L. Coble, “Intermediate-State Sintering: Modification and Final State Diffusion Models,” J. Appl. Phys., 36, pp.2327(1965).
[24]W. D. Kingery and M. Berg, “Stidy of the initial Stages of Sintering Solids by Viscous Flow, Evaporation-Condensation, and Self-Diffusion,” J. Appl. Phys., 26, 1205-1212(1955).
[25]Y. F. Hsu, S. F. Wang and T. W. Cheng, “Effects of additives on the densification and microstructural evolution of fine θ-Al2O3 powder,” Mater. Sci. Eng. A362, 300-308(2003).
[26]M. F. Ashby, “A First Report on Sintering Diagrams,” Acta. Metal., 22, 275-289 (1974).
[27]W. D. Kingery, H. K. Bowen and D. R. Uhlmann, Introduction to Ceramics, 2nd Ed. John Wiley and Sons, New York (1976).
[28]J. S. Reed, “Introduction of the Principles of Ceramic Processing,” John Wiley and Sons, New York, (1995).
[29]A. N. Patankar and G. Mandel, “The Packing of Solid Particles,” Trans. Indian Ceram. Soc., 39 [4], 109-117, (1980).
[30]H. Y. Sohn and C. Moreland, “The Effect of Particle Size Distribution on Packing Density,” Can. J. Chem. Eng., 46, 162-167,(1968).
[31]G. P. Bierwagen and T. E. Saunders, “Studies of the Effects of Particle Size Distribution on the Packing Efficiency of Particles,” Powder Tech., 10, 111-119, (1974).
[32]R. M. German, Handbook of Powder metallurgy, Particle packing characteristics, Metal Powder Industries Federation,(1989).
[33]A. G. Evans, “Considerations of inhomogeneity effect in sintering,” J. Am. Ceram. Soc., 65, 497-501,(1982).
[34]W. D. Kingery and B. Francois, “Sintering of Crystalline Oxides, I. Interactions between Grain Boundaries and Pores,” pp. 471 in Sintering and Related Phenomena. Eds. G. C. Kuczynske, N. A. Hooton, and G. F. Gibbon, Gordon Breach, New York (1967).
[35]R. L. Coble, “Diffusion Sintering in the Solid State,” pp. 147-163 in Kinetics of High-Temperature Process, Ed. W. D. Kingery, MIT Press, Cambridge, MA, and John Wiley and Sons, New York.
[36]F. F. Lange, “Sinterability of Agglomerated Powders,” J. Am. Ceram. Soc., 67 [2], 83-89 (1984).
[37]M. Medraj, R. Hammond, M.A. Parvez, R.A.L. Drew and W.T. Thompson.Journal of the European Ceramic Society, Volume 26, Issue 16, pp. 3515-3524 (2006).
[38]Karin M. Kingsman and Joanna McKittrick. “Phase Development and Luminescence in Chromium-Doped Yttrium Aluminum Garnet (YAG:Cr) phosphors,” J. Am. Ceram. Soc., vol. 77, no. 11, pp. 2866-72(1994).
[39]高逢時,”白光LED 釔鋁石榴石螢光體專利(一)”,台北:道爾科技,(2004)。
[40]Toyokawa, T. Miyazato, M. Miyazato, T. Kohatus, H. Shimabukuro and J. Tamashiro, J. Phys. Soc. of Japan 65, 1106 (1996).
[41]R. D. Shannon, Acta Crystallogr. 32, 751(1976).
[42]D. J. Robbins, “The effect of crystal field and temperature on the photoluminescence excitation efficiency of Ce3+ in YAG,” Journal of the Electrochemical Society, vol. 126, no. 9, pp. 1550-1555(1979).
[43]Qinag Li, Lian Gao and Dongsheng Yan, “The crystal structure and spectra of nano-scale YAG:Ce3+ ,” Materials Chemistry and Physics, vol. 64, no. 1, pp. 41-44(2000).
[44]溫佑良,不同粒徑釔鋁石榴石摻鈰螢光體之合成與性質研究,碩士論文,國立成功大學材料科學及工程所,台南,第44 頁(2003)。
[45]Light-Emitting-Diodes-dot-org home page, Avaliable at: http://www.lightemittingdiodes.org
[46]張中太,張俊英編著,無機光致發光材料及應用,北京:化學工業出版社,(2005)。
[47]T. Takamori and L. D. David, “Controlled nucleation of hydrothermal growth of yttrium-aluminum garnet powder”, Am.Ceram.Soc.Bull., 65[9], pp.1282-1286 (2006).
[48]A. Ikesue and I. Furusato, ”Fabrication of polycrystalline,Transparent YAG ceramics by a solid-state reaction method”, J.Am.Ceram.Soc., 78 [1], pp.225-228(1995).
[49]May Nyman, James Caruso, Mark J. Hampden-Smith, and Toivo T. Kodas, “Comparison of Solid-State and Spray-Pyrolysis Synthesis of Yttrium Aluminate Powders,”Journal of the American Ceramic Society, Vol. 80, Issue 5, pp. 1231(1997).
[50]Tokumatsu Tachiwaki, Masaru Yoshinaka, Ken Hirota, Takayasu Ikegami and Osamu Yamaguchi,“Novel synthesis of Y3Al5O12 (YAG) leading to transparent ceramics,”Solid State Communications, Volume 119, Issues 10-11, pp.603-606(2001).
[51]Xiaomei Guo and Kenji Sakurai,“Formation of Yttrium Aluminum Perovskite and Yttrium Aluminum Garnet by Mechanical Solid-State Reaction,”Japanese Journal of Applied Physics, Vol.39, pp. 1230-1234(2000).
[52]Wei-Tse Hsu, Wei-Hong Wu and Chung-Hsin Lu,“Synthesis and luminescent properties of nano-sized Y3Al5O12:Eu3+ phosphors,”Materials Science and Engineering B, Volume 104, Issues 1-2, pp. 40-44(2003).
[53]M. Medraj, R. Hammond, M.A. Parvez, R.A.L. Drew and W.T. Thompson,“High temperature neutron diffraction study of the Al2O3–Y2O3 system, ”Journal of the European Ceramic Society, Volume 26, Issue 16, pp. 3515-3524(2006).
[54]Mikrajuddin Abdullah, Kikuo Okuyama, I. Wuled Lenggoro and Syuichi Taya,“A polymer solution process for synthesis of (Y,Gd)3Al5O12:Ce phosphor particles, ” Journal of Non-Crystalline Solids, Vol. 351, Issues 8-9, pp. 697-704(2005).
[55]Kai Zhang, He-Zhou Liu, Ya-Ting Wu and Wen-Bin Hu,“Co-precipitation synthesis and luminescence behavior of Ce-doped yttrium aluminum garnet (YAG:Ce) phosphor: The effect of precipitant,”Journal of Alloys and Compounds, In Press, Corrected Proof, Available online 29 December (2006).
[56]Ma Lin, Hu Jian-guo, Wan Guo-jiang, Hu Xue-fang, Yan Shi-run, Yu Li-gang, Wang Hui-qin and Xu Yan,“Effect of Flux on YAG: Ce Phosphors Prepared by Solid-state Reactions,”Chinese Journal of Luminescence, vol. 27, no. 3, p348-352(2006).
[57]T. Tomiki, Y. Isa, Y. Kadekawa, Y. Ganaha, N. Toyokawa, T. Miyazato, M. Miyazato, T. Kohatus, H. Shimabukuro and J. Tamashiro,“Optical Absorption of Single Crystals of Y3Al5O12 and Y3Al5O12:Nd3+ in the UV Fundamental Absorption Edge Region,”Journal of the Physical Society of Japan Vol. 65 No. 4, April, pp. 1106-1113(1996).
[58]R. A.Rodrigues-Rojas, E.De la Rosa, L. A. Diaz-Torres, P. Salas, R. Mel endrez, M. Barboza-Flores, M. A. Menese-Nava and O. B. Garcia, Opt. Mater. 25, 285 (2004).
[59]L.G. Van UitertAn,“empirical relation fitting the position in energy of the lower d-band edge for Eu2+ or Ce3+ in various compounds,”Journal of Luminescence, Volume 29, Issues 5-6, pp.1-9(1984).
[60]Jun-Ren Lo and Tseung-Yuen Tseng, “Phase development and energy of Y2O3-Al2O3 system by a modified sol-gel process,” Materials Chemitry and Physics, vol. 56, no. 1, pp. 56-62(1998).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔