(34.204.185.54) 您好!臺灣時間:2021/04/11 05:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:葉心丞
研究生(外文):Hsin-Cheng Yeh
論文名稱:機車噴油引擎噴霧觀測與動態油膜模式建立
論文名稱(外文):Fuel Spray Observation and Development of Fuel Film Dynamic Model for Motorcycle EFI System
指導教授:吳浴沂
口試委員:蔡國隆葉啟南
口試日期:2007-07-31
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:車輛工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:90
中文關鍵詞:機車引擎電子燃油噴射系統壁濕現象油膜動態模型參數標定
外文關鍵詞:Electronic Fuel Injection systemMotorcycle engineWall wettingFuel Film dynamic modelParameters determination
相關次數:
  • 被引用被引用:5
  • 點閱點閱:292
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
電子燃油噴射系統相較於化油器引擎來說,可以提供準確且及時的燃油量,但當引擎在暫態運轉條件下操作時,進氣道內之壁濕現象會影響實際進入汽缸的空燃比,也因此影響到汽缸內的燃燒狀況與廢氣汙染物的排放。本研究將針對機車噴油引擎觀察其噴油嘴的噴霧特性,以及噴束在自由空間和限制空間內的噴霧狀況。並利用Matlab/Simulink所建構的油膜動態模型,使用燃油擾動法求出管壁上的燃油沉積比例與油膜蒸發常數。分別藉由以上定性以及定量的方式來探討歧管內的壁濕現象。實驗結果發現,針對進氣歧管以及進氣道幾何形狀,選擇適當的噴油嘴以及噴束型態,且將噴束對準汽門背噴射,將會減少壁濕現象的發生;引擎轉速會對油膜模型特性參數有重要影響,轉速愈快,沉積在管壁上的油膜量愈少,且從油膜上揮發的燃油愈多;節氣門開度與噴油量變化對於油膜參數的影響在本研究中並不明顯。
The advantages of fuel injection system can offer more accruate and prompt fuel amount then that of carburetor. However, when the engine is operated under the transient operation condition, the wall wetting effect will influence the in-cylinder air fuel ratio. The wrong air fuel ratio will cause higher exhaust emissions and worse driveability. So, this paper will investigate the fuel dynamics in engine. The observation of spray pattern is performed in free and limited space. Then the fuel film dynamic model is used to correct the transient fueling step and simulate the in-cylinder air fuel ratio. The deposit factor and boiling time constant is determined by means of step change of fuel injection and measuring the exhaust gas air fuel ratio. The experimental result shows that choose the injector with proper spray pattern, and then aim at the inlet valve will reduce the wall wetting. The engine speed have important influence on parameter of fuel film dynamic model. and decreases with increasing engine speed, but weakly dependent upon injected fuel amount and throttle position.
目 錄

摘 要 I
ABSTRACT II
誌 謝 IV
目 錄 V
表目錄 VIII
圖目錄 IX
第一章 緒論 1
1.1研究背景與動機 1
1.2研究目的與方法 3
1.3本文之組織架構 4
第二章 電子燃油噴射系統 5
2.1原理介紹 5
2.1.1空氣系統 5
2.1.2燃油系統 7
2.1.3控制系統 7
2.2電子燃油噴嘴 8
2.2.1工作原理 9
2.2.2燃油噴射量 10
2.2.3噴油嘴噴霧特性 11
2.2.4影響霧化之因素 14
2.3壁濕現象及其影響因素 15
2.4油膜動態模型 19
2.5暫態燃油擾動測試 20
2.6廣域含氧感知器之反應特性 21
第三章 實驗設備與方法 23
3.1實驗設備 23
3.1.1 實驗引擎 23
3.1.2 引擎馬力試驗機 28
3.1.3 噴油嘴測試平台 31
3.1.4 高速攝影機與光源機 34
3.1.5 空氣流量計 36
3.1.6 自由空間噴霧觀測平台 37
3.1.7 限制空間噴霧觀測平台 37
3.1.8 廣域空燃比量測儀 39
3.1.9 引擎控制與資料擷取系統 41
3.2實驗方法 43
3.2.1 噴油嘴動態流量曲線測試 43
3.2.2 噴油嘴噴霧觀測 43
3.2.3 燃油擾動測試與引擎模擬 45
第四章 結果與討論 48
4.1噴油嘴特性研究 48
4.1.1 噴油嘴動態流量曲線 48
4.1.2 驅動電壓對噴油量之影響 49
4.1.3 噴射壓力對噴油量之影響 50
4.1.4 燃油溫度對噴油量之影響 51
4.2自由空間噴霧觀測 53
4.2.1 噴油嘴噴霧型態 53
4.2.2 噴射壓力對噴霧所造成之影響 55
4.3限制空間噴霧觀測 56
4.4油膜模型特性參數 與 59
第五章 結論與未來展望 72
5.1結論 72
5.2未來展望 73
附錄一:暫態燃油擾動實驗數據 74
附錄二:自由空間噴霧照片 76
附錄三:限制空間噴霧照片 80
參考文獻 86
符號彙編 89
著作發表 90
[1]台閩地區機動車輛登記數,http://www.motc.gov.tw/monthly_report/c4050.xls
[2]環保署空氣品質保護及噪音管制處,“低污染車輛推廣”,http://www.epa.gov.tw/F/
[3]廖俊性,“機車排氣污染法規與因應對策”,燃燒季刊,2007。
[4]吳浴沂,“機車排氣污染管制與未來技術策略”,機械工業雜誌,2005年271期。
[5]吳啟明,“汽油噴射引擎”,全國工商出版社,2001年。
[6]BOSCH,“Automotive Handbook”,5th EDITION。
[7]莊幸富,“引擎噴油與點火控制微電腦之快速成型技術研究”,國立台北科技大學碩士論文,民國92年。
[8]曹建民,“喷雾学”,机械工业出版社,北京2005年5月。
[9]邱添輝,“新電子控制汽油噴射”,文笙書局,民國87年8月。
[10]彭毓瑩,“機車動力系統設計技術手冊”,財團法人工業技術研究院,民國80年9月。
[11]Jehlik, F. A., “Investigation of Fuel Film Effects in a Small Air-cooled Utility Engine”, M.S. Thesis, Mechanical Engineering Department, University of Wisconsin-Madison, 2000.
[12]張家倫,“進氣道噴霧流場之研究:應用PDPA”,國立清華大學碩士論文,民國85年。
[13]肖琼、颜伏伍、邹华,“电控喷油器喷雾测试系统开发与应用”,汽车工程,2006(Vol.28) No.3,2006。
[14]Lefebvre, A. H., “Gas Turbine Combustion”, McGraw-Hill Publishing Company : New York, 1983.
[15]Almkvist, G., Eriksson, S., “An Analysis of Air to Fuel Ratio Response in a Multi Point Fuel Injected Engine Under Transient Conditions”, SAE 932753, 1993.
[16]Yang, J. T., Jeng, M. H., Tsai, G. L., “The Effect of Intake Manifolds on Cylinder to Cylinder Variations of Performance and Emissions of Four-Cylinder Engine”Journal of the Chinese Insitute of Engineers, Vol. 14, No. 1, pp.21-28.
[17]魏國峰,“氣道噴霧流場之量測與分析”,國立清華大學碩士論文,民國87年。
[18]朱航、王绍銧,“电控汽油机进气管道油膜特性参数的标定”,汽车工程, 2004(V01.26)No.2 2004033,2004。
[19]Hendricks, E., Vesterholm, T., “The Analysis of Mean Value SI Engine Models”, SAE 920682, 1992.
[20]Senda, J., “Measurement and Modeling on Wall Wetted Fuel Film Profile and Mixture Preparation in Intake Port of SI Engine”, SAE 1999-01-0798, 1999.
[21]Bourke, M. C., Evers L. W., “Fuel Film Dynamics in the Intake Port of a Fuel Injected Engine” SAE 940446, 1994.
[22]Johnen, T., Haug, M., “Spray Formation Observation and Fuel Film Development Measurements in the Intake of a Spark Ignition Engine”, SAE 950511, 1995.
[23]Heywood, J. B., Internal Combustion Engine Fundamentals, McGraw-Hill Publishing Company : Singapore, 1988.
[24]Hentschel, W., Grote, A., Langer, O., “Measurement of Wall Film Thickness in the Intake Manifold of a Standard Production SI Engine by a Spectroscopic Technique”, SAE 972832, 1997.
[25]Michael, A., Mueller, E., “Determination of the Air/Fuel Ratio of a SI Engine During Transient With a Standard UEGO Sensor”, SAE 2001-01-1955, 2001.
[26]McGee, J., et al., “The Effects of Port Fuel Injection Timing and Targeting on Fuel Preparation Relative to a Pre-Vaporized System”, SAE 2000-01-2834, 2000.
[27]Strauss, S., “Investigation of Fueling Strategies for the Transient Operation of a Small Four Stroke Engine”, M.S. Thesis, Mechanical Engineering Department, University of Wisconsin-Madison, 1999.
[28]Jehlik, F. A., Ghandhi, J.B., “Investigation of Intake Port Fuel Film in a small Utility Air-Cooled Engine”, SAE 2001-01-1788/4211, 2001
[29]Zhao, F. Q., Lai, M. C., David, L. H., “The Spray Characteristic of Automotive Port Injection – A Critical Review”, SAE 950506, 1995.
[30]Hires, S. D., Overington, M. T., “Transient Mixture Strength Excursions – An Investigation of their Cause and the Development of a Constant Mixture Strength Fuel Strategy”, SAE 810494.
[31]Skippon, S. R., et al., “Effects of Fuel Composition on In-Cylinder Air/Fuel Ratio During Fuelling Transients in an SI Engine, Measured Using Differential Infra-Red Absorption” SAE 961204, 1996.
[32]Georg, M., et al., “Influence of Air Assisted Fuel Injction on the Mixing Preparation within the Intake Ports of SI-Engine”, SAE 960037, 1996.
[33]SYNERJECT,http://www.synerject.com/fuelinjectors-dekaVII.html
[34]Pulkrabek, W. W., Engineering Fundamentals of the Internal Combustion Engine, Prentice-Hall Pearson Education, Inc., 2004.
[35]Baumgarten, C., Mixture Formation in Internal Combustion Engines, Springer-Verlag Berlin Heidelberg : New York, 2006.
[36]Shayler, P. J., Teo, Y. C., Scarisbrick, A., “Fuel Transport Characteristics of Spark Ignition Engines for Transient Fuel Compensation”, SAE 950067, 1995.
[37]Almkvist, G., et al., “Measurements of Fuel Film Thickness in the Inlet Port of an S.I. Engine by Laser Induced Fluorescence”, SAE 952483, 1995.
[38]Werlberger, P., Rokita, R., Chmela, F., “Observation of Fuel Injection and Combustion by Use of an Endoscopic Video System” Proceedings of IMechE Seminar-Measurement and Observation Analysis of Combustion in Engine, 1994.
[39]Millo, F., Ferraro, C. V., Pilo, L., “A numerical contribution to the improvement of individual cylinder AFR control in a 4-cylinder S. I. engine”, SAE 2001-01-1009, 2001.
[40]林信傳,“機車噴射引擎管理系統之設計與驗證”,國立台北科技大學碩士論文,民國96年。
[41]Almkvist, G., Eriksson, S., “A Study of Air to Fuel Transient Response and Compensation with Different Fuels” SAE 941931, 1994.
[42]吳浴沂、吳英煌,“油膜動態對於引擎效率影響之探討”,第十屆車輛工程學術研討會,台北,November 16, 2005。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔