(3.236.228.250) 您好!臺灣時間:2021/04/17 12:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林晏榛
研究生(外文):Yen-Chen Lin
論文名稱:高密度聚乙烯對聚苯乙烯發泡的影響
論文名稱(外文):The Influence of High Density Polyethylene on the Foaming of Polystyrene under CO2 Supercritical Conditions
指導教授:王賢達王賢達引用關係翁彰明
口試委員:楊正昌
口試日期:2007-06-04
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:有機高分子研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:84
中文關鍵詞:聚苯乙烯高密度聚乙烯粘彈性超臨界發泡
外文關鍵詞:PolystyrenePolyethyleneCarbon dioxideFoam
相關次數:
  • 被引用被引用:3
  • 點閱點閱:444
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究CO2超臨界狀態下高密度聚乙烯(HDPE)對三種通用級聚苯乙烯(GPPS)及一種耐衝擊性聚苯乙烯(HIPS)的發泡影響。四種聚苯乙烯(PS)各具有不同的重量平均分子量。較高的CO2 發泡(含浸)壓力會縮短CO2在PS/HDPE內部達到平衡的含浸時間,相同發泡時間、發泡溫度120℃,PS/HDPE發泡體密度隨著HDPE量增加而下降,且四種PS/HDPE發泡體密度差異性變小。發泡溫度130℃,PS/HDPE發泡體密度隨著HDPE量增加而上升,且四種PS/HDPE發泡體密度差異性變大。發泡溫度120℃三種GPPS/HDPE發泡體密度由大到小的順序為PS-1、PS-2、PS-3,而發泡溫度130℃的發泡體密度順序剛好相反。四種PS的玻璃轉化溫度(Tg)因添加少量HDPE而下降,但繼續增加HDPE含量無法使PS/ HDPE的Tg進一步下降。當四種PS形成發泡體時,在發泡溫度範圍130℃~140℃下,可得到較低密度的PS發泡體。含2phr及5phr HDPE的PS,在125℃~130℃發泡溫度範圍下,可得到較低密度PS/ HDPE的發泡體;GPPS/7phr HDPE於發泡溫度125℃附近得到較低發泡體密度,而HIPS/7phr HDPE則於發泡溫度120℃附近得到較低發泡體密度。E¢與PS和PS/HDPE發泡體密度之間的關係是E¢值約介於1.7×106 Pa ~ 4.5×105 Pa時可得到較低密度的發泡體。
不同發泡溫度下,PS/HDPE的發泡體密度及發泡體外觀都會有不同變化。PS/HDPE發泡體在發泡溫度大於130℃容易產生後收縮現象,發泡體密度會突然上升且外觀差。分子量大的PS/HDPE比分子量小的PS/HDPE較容易得到表面平坦光滑的發泡體。
相同發泡溫度當發泡(含浸)壓力上升時,PS和PS/HDPE發泡體密度會隨著下降,同時氣泡的泡徑變小,但是發泡(含浸)壓力太大如4000psi時,發泡體密度反而上升。低發泡(含浸)壓力例如1000psi和2000psi時,PS/HDPE發泡體可得到光滑表面;高發泡(含浸)壓力4000psi,則PS/HDPE發泡體產生很多裂縫。HIPS/HDPE發泡體比GPPS/HDPE發泡體對發泡(含浸)壓力更敏感。發泡(含浸)壓力1000psi未達CO2的臨界壓力,所得到PS/2phr HDPE發泡體具有300µm∼400µm的氣泡泡徑;而發泡(含浸)壓力超過臨界壓力,所得到PS/2phr HDPE發泡體最小只有小於30µm的氣泡泡徑。
目 錄
中文摘要 ................................................i
英文摘 ................................................iii
誌謝 ....................................................v
目錄 ...................................................vi
表目錄 .................................................ix
圖目錄 ..................................................x
附錄目錄 ...............................................xv
第一章 緒論 ...........................................1
1.1 前言 ...........................................1
1.2 研究背景 .......................................2
1.3 研究目的 .......................................2
第二章 相關理論與文獻回顧 .............................3
2.1 聚苯乙烯(Polystyrene,PS)高密度聚乙烯
(High density Polyethylene,HDPE)..............3
2.1.1 PS的合成 ......................................3
2.1.2 PS的種類 ......................................5
2.1.3 PS的性質 ......................................6
2.1.4 PS的用途 ......................................7
2.1.5 PE的合成 ......................................7
2.1.6 PE的種類 ......................................8
2.1.7 PE的性質 ......................................9
2.2 超臨界CO2發泡之理 論 ...........................9
2.2.1 超臨界CO2之特性 ...............................9
2.2.2 超臨界流體發泡成型之過程 .....................10
2.2.3 超臨界CO2發泡原理 ............................11
2.2.4 超臨界CO2發泡製程簡介 ........................12
2.2.5 超臨界CO2高分子之特性 ........................13
2.2.6 超臨界發泡體介紹及其應用 .....................15
2.3 材料黏彈性質之量測 ..........................16
2.3.1 高分子材料之黏彈性 ...........................16
2.3.2 動態機械性質分析原理簡介 .....................16
2.3.3 影響動態機械性質分析之因素 ...................17
2.4 文獻回顧 ......................................22
第三章 實驗 ..........................................26
3.1 材料 ........................................26
3.2 儀器設備與鑑定方 ............................27
3.3 實驗流程 ....................................29
3.4 樣品製備 ....................................30
第四章 結果與討論 ....................................32
4.1 原物料DMA動態機械性質測試 .....................32
4.2 含浸時間與發泡溫度對發體的影響 ................37
4.3 發泡體密度與發泡溫度之探討 ....................43
4.4 發泡體密度與發泡壓力之探討 ....................48
4.5 發泡體外觀之探討 ..............................52
4.5.1 不同發泡溫度下發泡體外觀 .....................52
4.5.2 不同發泡壓力下發泡體外觀 .....................56
4.6 發泡體微結構之探討 ............................60
第五章 結論 ..........................................71
參考文獻 ..............................................73
附錄
A 四種PS/HDPE在固定溫度及固定壓力下含浸CO2的發泡
體密度與含浸時間之關係圖 ......................79
參考文獻

[1] 趙偉平,「聚苯乙烯傳統製程回顧」, 觸媒與製程,第四卷,
第二期,1995,第21-24頁。
[2] H. Ukei, T. Hirose, S. Horikawa, Y. Takai, M. Taka, N.
Azuma and A. Ueno, "Catalytic degradation of
polystyrene into styrene and a design of recyclable
polystyrene with dispersed catalysts, " Catalysis
Today, vol. 62, no.1, 2000, pp. 67-75.
[3] 須本一郎著,張明基譯著,苯乙烯系樹脂PS. AS. ABS,台南:
復漢出版社,1999,第264-268頁。
[4] D. Rosati, B. Van Loon and P. Navard, "Rheology of
strongly segregated poly(styrene-dimethylsiloxane)
block copolymers, " Polymer, vol. 41, no. 1, 2000, pp.
367-375.
[5] S. Nomura, K. Kato, I. Komaki, Y. Fujioka, K. Satio
and I. Yamaoka," Viscoelastic properties of coal in
the thermoplastic phase, " Fuel, vol.78, no.13, 1999,
pp. 1583-1589.
[6] Z. Lu, C. He and T. S. Chung, "Composites of
multifunctional benzylaminofullerene with low-density
polyethylene, " Polymer, vol. 42, no.12, 2001, pp.
5233-5237.
[7] L.V. Gibiansky and R. Lakes, "Bounds on the complex
bulk and shear moduli of a two-dimensional two-phase
viscoelastic composite, " Mechanics of Materials, vol.
25, no. 2, 1997, pp. 79-95.
[8] 吳舜英和徐敬一合編,塑膠發泡成型技術,台南:復文書局,
1997,第11-12 頁。
[9] 蔡信行博士主編,楊靜儀、葉德惠、陳進隆編著,聚合物化
學,台北:文京圖書,1993,第518-525頁。
[10] William F. Smith原著,李春穎、許煙明、陳忠仁譯者,材料
科學與工程,台北:高立出版社,第二版,1994,第296-302
頁。
[11]曾文聰,PU發泡體的結構與性質,碩士論文,國立中央大學化
學工程研究所,桃園,2001。
[12]劉冠含,超臨界二氧化碳流體對聚乙烯氧/聚甲基丙烯酸甲酯摻
合體之影響,碩士論文,雲林科技大學工業化學與災害防治研
究所,雲林,2001。
[13] C. D. Han, C. D. Baek and J. K. Kin, "Effect of
microdomain structure on the order-disorder
transition temperature of polystyrene-block-
polyisoprene-block-polystyrene copolymers,"
Macromolecules, vol. 23, no.2, 1990, pp. 561-570.
[14] J. S. Colton and N. P. Suh, "Nucleation of
microcellular thermoplastic from with additives: part
2: Experimental results and discussion, " Polym. Eng.
and Sci., vol. 27, 1987, pp. 493-499.
[15] J. S. Colton and N. P. Suh, "Nucleation of
microcellular foam: Theory and practice, " Polym.
Eng. and Sci., vol. 27, 1987, pp. 500-503.
[16] K. A. Arora, A. J. Lesser and T. T. McCarthy,
"Preparation and characterization of microcellular
polystyrene foams processed in supercritical carbon
dioxide," Macromolecules, vol. 31, no.14, 1998, pp.
4614-4620.
[17] S. K. Goel, and E. J. Beckman, "Generation of
microcellular polymeric foams using supercritical
carbon-dioxide .1. effect of pressure and temperature
on nucleation, " Polym. Eng. Sci., vol. 34, no.14,
1994, pp. 1137-1147.
[18] S. K. Goel and E. J. Beckman, "Generation of
microcellular polymeric foams using supercritical
carbon-dioxide .2. cell-growth and skin formation , "
Polym. Eng. Sci., vol. 34, no.14, 1994, pp. 1148-1156.
[19] A. H. Behravesh, C. B. Park "Approach to the
production of low-density microcellular foams in
extrusion," Annual Technical Conference - ANTEC,
Conference Proceedings, vol. 2, 1998, pp. 1958-1967.
[20] T. Dynamic Young''s modulus and loss factor of floor covering materials, " Applied Acoustics, vol. 49, no. 2, 1996, pp. 179-190.
[21] F. Stratmann, Th. Kauffeldt, D. Hummes and H. Fissan, "Differential electrical mobility analysis: A theoretical study, " Aerosol Science and Technology, vol. 26, no. 4, 1997, pp. 368-383.
[22] S. H. Zh and R. C. Flagan, "Resolution of the radial differential mobility analyzer for ultrafine particles," J. Aero. Sci., vol. 27, 1996, pp. 1179-1200.
[23] C. D. Han and J. K. Kim, "On the Use of the time-temperature Superposition in multicomponent and multiphase polymer Systems, " Polymer, vol. 34, 1993, pp. 2533-2539.
[24] 劉中行,「高分子材料熱分析實務技術」,科儀新知,第十八卷,第四期,1997,第46-49頁。
[25] 謝國煌、陳原振、曾勝茂,「動態機械分析儀之應用分析」,科儀新知,第
十八卷,第四期,1997,第32-38頁。
[26] K. A. Neavor, A. J. Leasser and T. J. McCarthy, "Preparation and characterization of microcellular polystyrene foams processed in supercritical CO2, " Polym. Pret., vol. 38, 1997, pp. 446-447.
[27] J. Martini, F. Waldman and N. P. Shu, "The production and analysis of microcellular thermoplastic foams, " In: SPE ANTEC Proceedings, Vol.28, 1982, pp. 674-676.
[28] 胡德,高分子物理與機械性質(下),渤海堂文化公司,1998,第39-46頁。
[29] 林建中,聚合物物性/高分子材料機械性質,台北:文京圖書,1999,第
96-97頁。
[30] K. A. Arora, A. J. Lesser, and T. J. McCarthy, "Compressive behavior of microcellular polystyrene foams processed in supercritical carbon dioxide, " Polym. Eng. and Sci., vol. 38, no.12, 1998, pp. 2055-2062.
[31] D. I. Collias and D. G. Baird, "Tensile toughness of microcellular foams of polystyrene, styrene-acrylonitrile copolymer, and polycarbonate, and the effect of dissolved gas on the tensile toughness of the same polymer matrices and microcellular foams," Polym. Eng. and Sci., vol. 35, 1995, pp. 1167-1177.
[32] C. M. Stafford, T. P. Russell and T. J. McCarthy, "Expansion of polystyrene using supercritical carbon dioxide: Effects of molecular weight, polydispersity, and low molecular weight components, " Macromolecules, vol.32, no.22, 1999, pp.7610-7616.
[33] J. S. Colton and N. P. Suh, "Nucleation of microcellular thermoplastic from with additives: part 1: Theoretical considerations," Polym. Eng. and Sci., vol.27, 1987,pp. 485-492.
[34] C. B. Park, D. F. Baidwin and N. P. Suh, "Effect of the pressure drop rate on cell nucleation in continuous processing of microcellular polymers," Polym .Eng. Sci., vol.35, no.5, 1995, pp. 432-440.
[35] C. B. Park and N. P. Suh, "Filamentary extrusion of microcellular polymers using a rapid decompressive element, " Polym. Eng. Sci., vol. 36, no.1, 1996, pp. 34-48.
[36] C. B. Park, N. P. Suh and D. F. Baldwin, "Method for Providing Continuous Processing of Microcellular and Supermicrocellular Foamed Materials," U.S. Patent 5,866,053, 1999.
[37] C. B. Park, D. F. Baldwin and N. P. Suh, "Cell nucleation by rapid pressure drop in continuous processing of microcellular plastics, " MD(Am. Soc. Mech. Eng.), 46(Use of Plastics and Plastic Composites), 1993, pp. 537-552.
[38] X. Han, K. W. Koelling, D. L. Tomasko and L. J. Lee, "Extrusion of polystyrene microcellular foam with supercritical CO2, " In Proceedings of SPE-ANTEC, 58th, Orlando, FL, 2000; SPE: Brookfield, CT, Vol. 2, pp.1857-1861.
[39] X. Han, K. W. Koelling, D. L. Tomasko and L. J. Lee, "Continuous microcellular polystyrene foam extrusion with supercritical CO2," Polym. Eng. Sci., vol. 42, no. 11, 2002, pp. 2094-2106.
[40] X. Han, A. R. Baxter, K. W. Koelling, D. L. Tomasko and L. J. Lee, "Influences of solubility and viscosity in the polystyrene/CO2 microcellular foaming extrusion," In Proceedings of SPE ANTEC, 60th. San Francisco, CA , SPE; Brookfield, CT, Vol.2, 2002, pp.1910 -1914.
[41] C. Vachon and J. Tatibouet, "Effect of additives on the solubility and diffusivity of CO2 in polystyrene, " Annual Technical Conference - ANTEC, Conference Proceedings,v 2, ANTEC 2004 - Annual Technical Conference Proceedings, Volume 2: Materials, 2004, pp. 2527-2531.
[42] M. H. Xiang, C. Z. Chang, W. K. Kurt, D. L. Tomasko and J. L. Lee, "Polymer Nanocomposite Foams Prepared By Supercritical Fluid Foaming Technology," SPE ANTEC, 2003, pp.1732-1736.
[43] X. Xu , D. Xu "Effects of CO2 content on the expansion behaviors of PS foams," Annual Technical Conference - ANTEC, Conference Proceedings, v 2, ANTEC 2004 - Annual Technical Conference Proceedings, Volume 2:Materials, 2004, pp. 2646-2652.
[44] P. C. Lee,H. E. Naguib, B. Park and Jin Wang, "Increase of open-cell content by plasticizing the soft regions with a secondary blowing agent, " Annual Technical Conference - ANTEC, Conference Proceedings, v 2, ANTEC 2004-Annual Technical Conference Proceedings, Volume 2: Materials, 2004, pp. 2626-2630.
[45] M. H. Sheridan, L. D. Shea, M. C. Peters and D. J. Mooney, "Bioabsorbable polymer scaffolds for tissue engineering capable of sustained growth factor delivery, " J. Controlled Release, vol.64, 2000, pp.91-102.
[46] B. Krause, N. F. A. Van der Vegt,M. Wessling, "New ways to produce porous polymeric membranes by carbon dioxide foaming, " Desalination, vol. 144, no. 1-3, 2002, pp.5-7.
[47] B. Krause, R. Mettinkhof, N. F. A. Van der Vegt and M. Wessling, "Microcellular foaming of amorphous high-Tg polymers using carbon dioxide, " Macromolecules, vol. 34, no. 4, 2001, pp. 874-884.
[48] C. M. Wong, W. C. Liang, C. H. Ying and M. L. Hung, "Porous Polystyrene Foam Produced at Supercritical Conditions, " Journal of Cellular Plastics, vol. 40, 2004, pp.421-429.
[49] C. M. Wong, S. J. Tsai, C. H. Ying and M. L. Hung, "Effect of Low Density Polyethylene on Polystyrene Foam," Journal of Cellular Plastics, vol. 42, 2006, pp. 153-163.
[50] 王儷蓉,塑膠吸收二氧化碳氣體及其發泡之研究,碩士論文,淡江大學化學工程研究所,台北,2001。
[51] 周錦敏,以超臨界二氧化碳製備EVA發泡材,碩士論文,長庚大學化工與材料工程研究所,桃園,2004。
[52] 李坤霖,以超臨界二氧化碳製備mCOC發泡材,碩士論文,長庚大學化工與材料工程研究所,桃園,2005。
[53] 張巧慧,聚苯乙烯超臨界發泡與黏彈性關係之探討,碩士論文,長庚大學化工與材料工程研究所,桃園,2002。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔