跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/11 08:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳思涵
研究生(外文):Zu-Han, Chen
論文名稱:探討耦合劑對合成酸化改質多壁奈米碳管-聚醯亞胺複合材料之性質研究
論文名稱(外文):Synthesis and Characterization of Acid Modified Multi-walled Carbon Nanotube/ Polyimide Composite Induce by Coupling Agent
指導教授:程耀毅
口試委員:戴子安芮祥鵬
口試日期:2007-07-27
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:有機高分子研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:68
中文關鍵詞:聚醯亞胺多壁奈米碳管耦合劑
外文關鍵詞:polyimidemulti-walled carbon nanotubescoupling agent
相關次數:
  • 被引用被引用:0
  • 點閱點閱:208
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:1
本研究目的在於克服聚醯亞胺(polyimide)與多壁奈米碳管的相容性,因此,以混酸(H2SO4: HNO3 =3:1,vol %)對多壁奈米碳管預先處理做酸化改質,藉由超音波震盪截斷奈米碳管管壁而在表面接上羧酸基,並且使用耦合劑(coupling agent)先與聚醯亞胺之前驅物PAA(Polyamic acid)反應,之後再將含羧酸基之奈米碳管導入以共價鍵結形成Alkoxysilane terminated amic acid/MWNT-COOH之複合材料,再配合旋轉塗佈及階段性熱熟化步驟得到聚醯亞胺-奈米碳管複合薄膜。本研究將奈米碳管導入基材的目的是為了提升聚醯亞胺的導電性與機械性質,並且比較添加未改質及混酸改質四小時與六小時的碳管於聚醯胺酸中的影響。研究中使用傅立葉轉換紅外光譜儀(FTIR)來鑑定其化學結構,熱重損失分析儀(TGA)探討材料的熱穩定性質,萬能試驗機(Universal Test Machine)及鉛筆硬度計(Hardness Pencil Test)觀察其機械性質,掃描式電子顯微鏡(SEM)與穿透式電子顯微鏡(TEM)來觀察材料的表面型態及奈米碳管於基材中的分散性,超絕緣儀(Super Megohmmeter)量測材料的電性。
In this research﹐MWNTs were modified by mix acid(H2SO4:HNO3=3:1,vol%) under sonication for pretreatment to overcome the compatibility between polyimide and carbon nanotubes. The MWNTs were grafted with carboxylic groups on the wall of the tubes. Besides, APrTEOS was introduced as coupling agent. With ethoxysilane group, it can react with precursor of polyimide(PAA), which then combined with modified carbon nantubes(carboxylic group) to form covalent bond. The PI/MWNTs composites were obtained by a spin coating and multi-step thermal curing process.
In this study, the MWNTs were introduced into the matrix in order to increase its electrical and mechanical properties. The effect on PI/MWNTs composite with MWNTs unmodified or acid modified in four or six hours were also discussed. The structure of prepared PI-MWNTs was characterized by Fourier transform infrared (FTIR) spectrometr. The thermal properties, mechanical properties of PI-MWNTs nanocomposite were analyzed by Thermogravimetric analysis (TGA), Universal Test Machine and Hardness Pencil Test. The morphology of PI-MWNTs was observed by scanning electron microscopy (SEM). The dispersion of MWNTs in matrix were observed by transmission electron microscopy(TEM). The electrical property of composite were obtained by Super Megohmmeter.
目錄
中文摘要.................................................i
英文摘要................................................ii
誌謝...................................................iii
目錄....................................................iv
表目錄...................................................v
圖目錄.................................................. vi
第一章 緒論.............................................1
1-1 前言............................................1
1-2 研究動機........................................2
第二章 文獻回顧.........................................3
2-1聚醯亞胺的發展簡介...............................3
2-1-1聚醯亞胺的特性..............................4
2-1-2聚醯亞胺的合成原理..........................5
2-1-3聚醯亞胺的種類..............................6
2-2奈米碳管的簡介..................................13
2-2-1 奈米碳管的構造與特性..................15
2-3 奈米碳管的改質.............................19
2-4 聚醯亞胺-奈米碳管複合材料的簡介與應用......23
第三章 實驗設備與步驟..............................24
3-1實驗藥品....................................24
3-2實驗儀器....................................26
3-3實驗流程....................................27
3-4實驗步驟....................................29
3-5分析試片的製備..............................32
第四章 結果與討論..................................35
4-1 FTIR光譜分析..............................35
4-2 熱重損失分析...............................40
4-3 剖面型態分析...............................44
4-4 機械性質分析...............................55
4-5 導電性質分析...............................61
第五章 結論.........................................65
參考文獻................................................66
表目錄
表 2-1 奈米碳管與其他材料之機械性質比較................18
表 4-1 聚醯胺酸、聚醯亞胺(及添加奈米碳管)、改質碳管的FT-IR特性官能基..............................................37
表 4-2 純PI及添加改質四小時碳管(3wt%~12wt%)膜材的熱裂解溫度......................................................43 表 4-3 PI╱MWNTs奈米複材的拉伸測試數據.................59
表 4-4 不同試片的鉛筆硬度測試...........................60
表 4-5 純PI及PI╱MWNTs奈米複材的電性量測數據............64
圖目錄
圖2-1 醯亞胺基圖示......................................4
圖2-2 聚醯亞胺的反應流程圖..............................5
圖2-3 典型的聚醯亞胺製備方法............................6
圖2-4 由聚異醯亞胺前軀物合成聚醯亞胺....................7
圖2-5 一階段合成反應圖..................................8
圖2-6 PMR15反應圖.......................................9
圖2-7 Kerimide 601反應圖...............................10
圖2-8 Thermid LR-600反應圖.............................10
圖 2-9 碳的同素異形體..................................14
圖2-10 單層奈米碳管結構圖示 (a)armchair(椅狀) (b)zigzag(鋸齒狀) (c)chiral(螺旋狀).................................15
圖2-11 石墨平面上的二個單位向量表示奈米碳管的結構參數圖.16
圖2-12 缺陷位置(Defect-group)官能基化反應圖.............20
圖2-13 共價管壁(Sidewall covalent)官能基化反應圖........22
圖 3-1 多壁奈米碳管的純化與改質流程圖...................27
圖 3-2 PI/奈米碳管薄膜的製備流程圖......................28
圖 3-3 聚醯亞胺(BPDA+p-PDA)的合成反應流程圖.............29
圖 3-4 聚醯亞胺-奈米碳管奈米複合膜的製備流程圖..........31
圖 4-1 FT-IR光譜圖 (a)未改質碳管Umcnt(b)酸化改質六小時碳管M6cnt(c)純聚醯亞胺Pure PI(d)添加改質碳管(3wt%)聚醯亞胺複材.......................................................38
圖 4-2 FT-IR光譜圖 (a)聚醯胺酸-耦合劑(alkoxysilane terminated amide acid,PAA-coupling agent)(b)添加改質碳管(3wt%)聚醯亞胺複材(c)改質六小時碳管......................38
圖 4-3 聚醯亞胺奈米碳管複材的FT-IR光譜圖(a)~(e)依序為純聚醯亞胺及添加未改質碳管(3wt%、6wt%、9wt%、12wy%)..........39
圖 4-4 聚醯亞胺奈米碳管複材的FT-IR光譜圖(a)~(e)依序為純聚醯亞胺及添加改質四小時碳管(3wt%、6wt%、9wt%、12wy%)......39
圖 4-5 純PI及添加未改質碳管(3wt%~12wt%)複材(PIUm03~PIUm12)的TGA曲線圖..............................................42
圖 4-6 純PI及添加改質四小時碳管(3wt%~12wt%)複材(PIM03~PIM12)在氮氣下的TGA曲線圖.........................42
圖 4-7 PI-MWNTs(3wt%)未改質碳管之SEM圖..................46
圖 4-8 PI-MWNTs(6wt%)未改質碳管之SEM圖..................46
圖 4-9 PI-MWNTs(9wt%)未改質碳管之SEM圖.................47
圖 4-10 PI-MWNTs(12wt%)未改質碳管之SEM圖...............47
圖 4-11 PI- mMWNTs(3wt%)改質4hr碳管之SEM圖..............48
圖 4-12 PI- mMWNTs(6wt%)改質4hr碳管之SEM圖..............48
圖 4-13 PI- mMWNTs(9wt%)改質4hr碳管之SEM圖..............49
圖 4-14 PI-mMWNTs(12wt%)改質4hr碳管之SEM圖.............49
圖 4–15 PI-MWNTs(9wt%)未改質碳管之TEM圖。(10K倍) .......50
圖 4–16 PI-MWNTs(9wt%)未改質碳管之TEM圖。(50K倍) .......50
圖 4-17 PI- mMWNTs(3wt%)改質4hr碳管之TEM圖。(10K倍).....51
圖 4-18 PI- mMWNTs(3wt%)改質4hr碳管之TEM圖。(50K倍).....51
圖 4-19 PI-mMWNTs(6 wt %)改質4hr碳管之TEM圖。(10K倍)....52
圖 4-20 PI-mMWNTs(6 wt %)改質4hr碳管之TEM圖。(50K倍)....52
圖 4-21 PI-mMWNTs(9 wt %)改質4hr碳管之TEM圖。(10K倍)....53
圖 4-22 PI-mMWNTs(9 wt%)改質4hr碳管之TEM圖。(50K倍).....53
圖 4-23 PI-mMWNTs(12 wt %)改質4hr碳管之TEM圖。(10K倍)...54
圖 4-24 PI-mMWNTs(12 wt%)改質4hr碳管之TEM圖。(50K倍)....54
圖 4-25 PI/MWNTs奈米複材的抗拉強度曲線圖................57
圖 4-26 PI/MWNTs奈米複材的楊氏係數曲線圖................57
圖 4-27 PI/MWNTs奈米複材的拉伸率曲線圖..................59
圖 4-28 純PI及PI/MWNTs複材的表面電阻圖示................63
圖 4-29 純PI及PI/MWNTs複材的體積電阻圖示................63
[1] Iijima, S. Nature 1991, 354, 56.
[2] Ying Xi, Atsuko Yamanaka, Yuezhen Bin, Masaru Matsuo, J. Appl. Polym. Sci., Vol. 105, 2868–2876 (2007)
[3] Zhen Zhou, Shifeng Wang, Lan Lu, Yong Zhang, Yinxi Zhang, J. Poly. Sci.: Part B: Polym. Phys., Vol. 45, 1616–1624 (2007)
[4] Sung Tae Kim, Jae Yun Lim, Bong Jun Park, Hyoung Jin Choi, Macromol. Chem. Phys. 2007, 208, 514–519
[5] Fabian Buffa, Gustavo A. Abraham, Brian P. Grady, Daniel Resasco J. Poly. Sci.: Part B: Polym. Phys., Vol. 45, 490–501 (2007)
[6] M. T. Bogert, R. R. Renshaw, J. Am. Chem. Soc., 30,1140(1908)
[7] Abajo, J.de.,Kricheldorf, Hans Rytger,”Progress in polyimide chemistry”,
New York:springer,1999.
[8] 張豐志,”應用高分子手冊”,台北:五南出版社,第十章,245-246頁 ,2003 。
[9] 丁孟賢,何天白,聚醯亞胺新型材料,科學出版社(1998)。
[10] C. Feger, Polym. Eng. Sci., 29,347(1989)
[11] M. J. Brekner, C. Feger, J. Polym. Sci.: Part A, 25,2479(1987)
[12]馬振基,聚醯亞胺樹脂之合成特性與應用,塑膠資訊,12,14(1997)
[13] G.D. Khvne, J. Polym. Sci. A-1,2,2757(1967)
[14] Hans R. Kricheldorf,Handbook of Polymer Synthesis,Part B, Marcel Dekker,Inc.(1992)
[15] R. A. Dine-Hart, W. W. Wright,Preparation and fabrication of romatic Polyimides,J. Appl. Polym. Sci. 11,609~627(1967)
[16] T. T. Serafini, P. Delving, G. R. Lightsey, J. Appl. PPolym. Sci.,16,905(1972)
[17] Tohru Takekoshi, Polyimides, Springger-Verlag , (1990)
[18] F. C. Whitemore, J, Am. Chem. Soc., 68, 485(1946)
[19] H.W. Kroto,J.R. Heath, S.C. O’Boran, R.F. Curl, R.E. Smalley, Nature 1985, 318, 162.
[20]成會明,奈米碳管,五南出版社,174~175(2004)
[21] Harris, Carbon Nanotubes and Related Structure, Cambridge Press, (Cambridge,
London, 1999).
[22] G. Dresselhaus , M.S. Dresslhaus, and P. Eklund, Phys. World, 1998, 11, 33.
[23] J.C. Charlier, J.P. Issi, Applied Physics A: Materials Science & Processing 1998, 67, 79.
[24] H. Dai, E.W. Wong, C.M. Lieber, Science 1996, 272, 52.
[25] M. Terrones, W.K. Hsu, H.W. Kroto, D.R.M. Walton, Nanotube: A Revolution in Materials Science, Topics in Curent Chemistry 1998, 199, 1.
[26] N. Krishnankutty, C. Park, N.M. Rodriguez, R.T.K. Baker, Carbon 1989, 27, 315.
[27] 鄭凱文,「利用鐵、鎳金屬片及次微米鐵點陣列成長具方向性奈米碳管」,
國立東華大學材料科學與工程研究所碩士論文,第8頁,民國九十一年。
[28] M. Treacy, T.W. Ebesen, J.M. Gibson, Nature 1996, 381, 678.
[29] E.W. Wong, P.E. Sheehan, C.M. Lieber, Science 1997, 277, 1971.
[30] 何國賢, “奈米碳管改質及其奈米複合材料製備行政院國家科學委員會專題研究計畫成果報告”,2003。
[31] Valery N. Khabashesku, Merlyn X. Pulikkathara, ChemInform 2006, 37,33.
[32] Peng Liu , European Polymer Journal 41 , 2005, 2693–2703.
[33] Dengsong Zhang a,b, Liyi Shi a,b,*, Jianhui Fang a,b, Xuanke Li c, Kai Dai a,
Mat. Lett.59 (2005) 4044 – 4047.
[34] T.Saito a,*, K.Matsushige b, K.Tanaka c, Physica B, 323 (2002) 280–283.
[35] Yi-Tao Liu a, Wei Zhao a, Zhen-Yu Huang a, Yan-Fang Gao a, Xu-Ming Xie a,*, Carbon 44 ,2006, 1581–1616.
[36] 林江珍,奈米碳管之有機分散性改質與應用,石油季刊,第41卷,13期,47~59,2005。
[37] Z. Ounaies, C. Park, K.E. Wise, E.J. Siochi, J.S. Harrison, Composite Sci. and Tech.,63,1637~1646,2003.
[38] J.G. Smith Jr, J.W. Connell, D.M. Delozier, P.T. Lillehei, K.A. Watson, Y. Lin,B. Zhou, Y.-P. Sun, J. Polym. ,45,825~836,2004.
[39] Siu-Ming Yuen, Chen-Chi M. Ma *, Yao-Yu Lin, Hsu-Chiang Kuan,
Com. Sci. and Tech.,2007.
[40] Cheol Park, Zoubeida Ounaies, Kent A.Watson, Roy E.Crooks,
Chem. Phys. Lett.,364,303~308,2002.
[41] Xiaowen Jiang, Yuezhen Bin, Masaru Matsuo, J. Polym., 46, 7418~7424, 2005.
[42]Hill, D. E.,Lin, Y., Rao, A. M., Allard, L. F. ,Sun, Y.P. , Macromolecules , 35,9466-9471,2002
[43]Lin. Y.,Zhou, B., Fernando,K. A. S., Liu, P., Allard, L. F. ,Sun, Y.-P.,
Macromolecules ,36,7199-7204,2003.
[44] Siu-Ming Yuen, Chen-Chi M. Ma, Chin-Lung Chiang, Yao-Yu Lin, Chih-Chung Teng, Journal of Polymer Science: Part A: Polymer Chemistry, Vol. 45, 3349–3358 (2007)
[45] Qu, L. W., Lin, Y., Hill, D. E., Zhou, B., Wang, W., Sun, X. F., Macromolecules,37,6055-6060,2004.Jang J, Bae J, Yoon S-H. “A study on the effect of surface treatment of carbon nanotubes for liquid crystalline epoxide–carbon nanotube composites.” J Mater Chem;13:676–8, 2003.
[46] Kovtyukhova NI, Mallouk TE, Pan L, Dickey EC. “Individual single-walled nanotubes and hydrogels made by oxidative exfoliation of carbon nanotube ropes.” J Am Chem Soc ;125:9761–9769;2003.
[47] Bao-Ku Zhu *, Shu-Hui Xie, Zhi-Kang Xu, You-Yi Xu, Composites Science and Technology,66,548-554,2006
[48] Siu-Ming Yuen,1 Chen-Chim. Ma,1 Chin-Lung Chiang, Yao-Yu Lin,1 Chih-Chun Teng,” “Preparation and Morphological, Electrical, and Mechanical Properties of Polyimide-Grafted MWCNT/Polyimide Composite”, J. of Polym Sci.: Part A: Polym. Chem., Vol. 45, 3349–3358 (2007)
[49] Zhi Yang, Xiaohua Chen, Yuxing Pu, Lingping Zhou, Chuansheng Chen, Wenhua Li,Longshan Xu, Bin Yi and Yanguo Wang, Polym. Adv. Technol. 2007; 18: 458–462
[50] Nantao Hu, Hongwei Zhou, Guodong Dang, Xianhua Rao, Chunhai Chen and Wanjin Zhang, Polym Int 56:655–659 (2007)
[51] Vladimir E. Yudin,1 Valentine M. Svetlichnyi,1 Alexander N. Shumakov, Macromol. Rapid Commun. 2005, 26, 885–888
[52] Zhi Yang, Xiaohua Chen *, Chuansheng Chen, Wenhua Li, Hua Zhang, Longshan Xu, Bin Yi,Polym. Com.,Vol. 28,Issue 1,36~41,2007
[53]Shigeta, M.,Komatsu, M.,Nakashima, N., Polymer Preprints, Japan 55 (1), pp. 1591
[54] Bing Zhou, Yi Lin, Darron E. Hill, Wei Wang, L. Monica Veca, Liangwei Qu, Polymer 47 (15), pp. 5323-5329
[55] Sangil Kim, Todd W. Pechar and Eva Marand, Desalination 192 (1-3), pp. 330-339
[56] Masahiro Shigeta, Masaharu Komatsu and Naotoshi Nakashima, Chemical Physics Letters 418 (1-3), pp. 115-118
[57] David S. McLachlan , Cosmas Chiteme , Cheol Park *,Journal of Polymer Science, Part B: Polymer Physics 43 (22), pp. 3273-3287
[58]Delozier, D.M., Tigelaar, D. M.,Watson, K. A., International SAMPE Symposium and Exhibition (Proceedings) 49, pp. 525-537,2004
[59] Toshio Ogasawara; Yuichi Ishida; Takashi Ishikawa, Advanced Composite Materials: The Official Journal of the Japan Society of Composite Materials 13 (3-4), pp. 215-226,2004
[60] Kristopher E. Wise, Cheol Park, Emilie J. Siochi and Joycelyn S. Harrison, Chemical Physics Letters 391 (4-6), pp. 207-211,2004.
[61]成會明,奈米碳管,五南出版社,342~345(2004).
[62] M. S. dresselhaus﹐J. Mater. Res. 1998, 13﹐2355.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top