跳到主要內容

臺灣博碩士論文加值系統

(44.220.44.148) 您好!臺灣時間:2024/06/14 12:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳重賢
研究生(外文):Chung-Hsien Wu
論文名稱:應用DSP於具功因修正之增壓電路以提升切換磁阻馬達運轉特性
論文名稱(外文):Applying DSP to Controlling Voltage-BoostingPFC Circuits to Improve OperatingCharacteristics of SRM
指導教授:胡國英
口試委員:周永山王金標
口試日期:2007-09-18
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電機工程系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:87
中文關鍵詞:DSP高功率因數功因修正升降壓轉換器切換磁阻馬達轉矩
外文關鍵詞:DSPHPFBoost-Buck ConverterSRMTorque
相關次數:
  • 被引用被引用:1
  • 點閱點閱:184
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文提出一個以數位晶片(TMS320F2812)控制之升降壓型交流/直流轉
換器,前級是一具功率因數修正之升壓型轉換器,採具有限流之平均電流模式
控制,後級是一降壓型轉換器,採電壓模式控制,後級輸出連接至切換磁阻馬
達以提供馬達於不同轉速時所需之電壓,如此馬達驅動器不僅具有高功率因
數,同時亦可改善馬達於高速運轉時之轉矩特性。於本論文中,藉由模擬及實
作以驗證所提架構之可行性。
In this thesis, a boost-buck converter based on the digital signal processor
(DSP) is presented and used to provide the various voltages for the different
operating speeds of the switching reluctance motor (SRM), so as to make the
motor drive have a high-power-factor (HPF) value as well as to enhance the torque
generating capability of the SRM. In design of such a two-stage converter, the first
power stage constructed by a boost converter is controlled by the average current
mode with power factor correction (PFC), whereas the last power stage established
by a buck converter is controlled by the voltage mode only. The feasibility of the
proposed control strategy is demonstrated by means of some simulation and
experimental results.
中文摘要......................................................................................................i
英文摘要......................................................................................................ii
誌謝.............................................................................................................iii
目錄.............................................................................................................iv
表目錄.........................................................................................................vi
圖目錄.........................................................................................................vii
符號對照表..................................................................................................xi
第一章 緒論..............................................................................................1
1.1 研究背景與目的..........................................................................1
1.2 研究方法.....................................................................................4
1.3 論文架構..........................................................................................5
第二章 功率因數及其控制方法之簡介....................................................6
2.1 功率因數簡介.............................................................................6
2.2 功率因數修正控制方法..............................................................10
2.2.1 主動式功率因數修正方法..................................................10
2.2.1.1 磁滯電流控制(Hysteresis Current Control)..........11
2.2.1.2 峰值電流控制(Peak Current Control)...................12
2.2.1.3 平均電流控制(Average Current Control) .............13
第三章 具有功因修正之增壓電路............................................................14
3.1 具功因修正之增壓電路..............................................................14
3.1.1 具功因修正之增壓電路及其控制方法...............................15
3.2 升壓型轉換器之基本原理與操作...............................................16
3.2.1 升壓型轉換器於連續導通模式下之穩態分析...................18
3.2.2 升壓型轉換器BCM 條件...................................................20
3.2.3 具平均電流模式控制之升壓型轉換器...............................22
3.3 降壓型轉換器之基本原理與操作...............................................23
3.3.1 降壓型轉換器連續導通模式之穩態分析...........................25
3.3.2 降壓型轉換器BCM 條件...................................................27
3.3.3 降壓型轉換器之電壓迴授控制..........................................29
第四章 增壓電路之硬體設計及軟體規劃.................................................30
4.1 數位化具功因修正之增壓電路概述............................................31
4.2 數位控制器分析與介紹..............................................................32
4.2.1 類比數位轉換器(ADC) .................................................32
4.2.2 比例積分微分器(PID) ...................................................34
4.2.3 脈波寬度調變訊號(PWM) ............................................36
4.3 硬體設計與元件之選配..............................................................37
4.3.1 回授感測電路與閘極驅動電路..........................................37
4.3.2 湧浪電流限制器.................................................................40
4.3.3 電感與電容值設計及功率開關元件之選配.......................41
4.4 軟體規劃流程.............................................................................46
4.4.1 主程式(Main) ................................................................46
4.4.2 中斷副程式(Interrupt)....................................................50
第五章 模擬與實驗波形...........................................................................53
5.1 電路模擬及其結果......................................................................53
5.1.1 當輸出電壓Vo2 設定為300 伏特........................................54
5.1.2 當輸出電壓Vo2 設定為350 伏特........................................55
5.2 實驗波形及其結果......................................................................64
5.2.1 當輸出電壓Vo2 設定為300 伏特........................................65
5.2.2 當輸出電壓Vo2 設定為350 伏特........................................65
5.3 以電阻為負載之模擬與實作之結果分析....................................78
5.4 以馬達驅動器為負載之實作結果................................................78
第六章 結論與未來展望...........................................................................81
6.1 結論.............................................................................................81
6.2 未來展望.....................................................................................81
參考文獻......................................................................................................82
A. 切換磁阻馬達與直流無刷馬達之比較
[1] L. Chang, “Comparison of AC drives for electric vehicles-a report on experts’
opinion survey,” IEEE AES Systems Magazine, vol. 9, no. 8, pp. 7-11, 1994.
B. 調控激磁角
[2] A. V. Rajarathnam, B. Fahimi and M. Ehsani, “Neural network based
self-tuning control of a switched reluctance motor drive to maximize torque per
ampere,” IEEE IAS’97, vol. 1, pp. 548-555, 1997.
[3] Shun-Chung Wang and Wen-Han Lan, “Turn-on angle searching strategy for
optimized efficiency drive of switched reluctance motors,” IEEE IECON’04,
vol. 2, pp. 1873-1878, 2004.
[4] B. Fahimi, G. Suresh, J. P. Johnson, M. Ehsani, M. Arefeen and I. Panahi,
“Self-tuning control of switched reluctance motors for optimized torque per
ampere at all operating points,” IEEE APEC’98, vol. 2, pp. 778-783, 1998.
[5] M. N. F. Nashed, Kazuhiro Ohyama, Kenichi Aso, Hiroaki Fujii and Hitoshi
Uehara, “Automatic Turn-off Angle Control for High Speed SRM Drive,” IEEE
ISIE’06, vol. 3, pp. 2152-2157, 2006.
[6] K. Russa, I. Husain and M. E. Elbuluk, “A self-tuning controller for switched
reluctance motors,” IEEE Trans. Power Electron., vol. 15, no. 3, pp. 545-552,
2000.
[7] P. Tandon, A. Velayutham Rajarathnam and M. Ehsani, “Self-tuning control of a
switched-reluctance motor drive with shaft position sensor,” IEEE Trans. Ind.
Appl., vol. 33, no. 4, pp. 1002-1010, 1997.
[8] K. I. Hwu and C. M. Liaw, “Intelligent tuning of commutation for maximum
torque capability of a switched reluctance motor,” IEEE Trans. Energy
Conversion, vol. 18, no. 1, pp. 113-120, 2003.
[9] I. Kioskeridis and C. Mademlis, “Optimal efficiency control of switched
reluctance generators,” IEEE Trans. Power Electron., vol. 21, no. 4, pp.
1062-1072, 2006.
[10] Y. Sozer and D. A. Torrey, “Optimal turn-off angle control in the face of
automatic turn-on angle control for switched-reluctance motors, ” IET Electr.
Power Appl., vol. 1, no. 3, pp. 395-401, 2007.
C. 增壓電路
[11] S. Chan and H. R. Bolton, “Performance enhancement of single-phase
switched-reluctance motor by DC link voltage boosting,” IEE Proc. Electric
Power Appl., vol. 140, no. 5, pp. 316-322, 1993.
[12] Sei Chan and A. M. Omar, “A modified split-supply switched-reluctance drive
inverter,” IEEE EMPD’95, vol. 2, pp. 628-633, 1995.
[13] Y. G. Dessouky, B. W. Williams and J. E. Fletcher, “A novel power converter
with voltage-boosting capacitors for a four-phase SRM drive,” IEEE Trans. Ind.
Electron., vol. 45, no. 5, pp. 815-823, 1998.
[14] M. Dahmane, F. Meibody-Tabar and F. M. Sargos, “An adapted converter for
switched reluctance motor/generator for high speed applications,” IEEE IAS’00,
vol. 3, pp. 1547-1554, 2000.
[15] K. I. Hwu and C. M. Liaw, “DC-link voltage boosting and switching control for
switched reluctance motor drives,” IEE Proc. Electric Power Appl., vol. 147, no.
5, pp. 337-344, 2000.
D. 功因修正電路應用於SRM
[16] I. Krishnan and S. Lee, “Effects of power factor correction circuit on switched
reluctance motor drives for appliances,” IEEE APEC’94, vol. 1, pp. 83-89,
1994.
[17] Geun-Hie Rim, Won-Ho Kim, Eun-Soo Kim and Ki-Chul Lee, “A choppingless
converter for switched reluctance motor with unity power factor and sinusoidal
input current,” IEEE PESC’94, vol. 1, pp. 500-507, 1994.
[18] L. Caruso, A. Consoll, G. Scarcella and A. Testa, “A switched reluctance motor
drive operating at unity power factor,” IEEE IAS’96, vol. 1, pp. 410-417, 1996.
[19] Young Ahn Kwon, Kyoo Jae Shin and Guen Hie Rim, “SRM drive system with
improved power factor,” IEEE IECON’97, vol. 2, pp. 541-545, 1997.
[20] A. Consoll, A. Testa, N. Ajello, F. Gennaro and M. Lo Presti, “Unipolar
converter for switched reluctance motor drives with power factor
improvement,” IEEE APEC’01, vol. 2, pp. 1103-1108, 2001.
[21] Feel-Soon Kang, Jung-Han Lee, Cheul-U Kim and Sung-Jun Park,
“Single-stage power factor corrected SRM driver,” IEEE IECON’02, vol. 2, pp.
1055-1059, 2002.
[22] Sung-Jun Park, Jae-Won Moon, Han-Woong Park and Jin-Woo Ahn,
“Microcontroller based single-phase SRM drive with high power factor,” IEEE
ISIE’02, vol. 3, pp. 701-705, 2002.
[23] X. D. Xue, K. W. E. Cheng, S. L. Ho and N. C. Cheung, “Investigation of the
effects of the control parameters and outputs on power factor of switched
reluctance motor drive systems,” IEEE PESC’02, vol. 3, pp. 1469-1474, 2002.
[24] T. Gopalarathnam and H. A. Toliyat, “A high power factor converter topology
for switched reluctance motor drives,” IEEE IAS’02, vol. 3, pp. 1647-1652,
2002.
[25] Z. Nie and A. Emadi, ”Integrated converters for switched reluctance motor
drives,” IEEE IPEMC’04, vol. 2, pp. 487-490, 2004.
[26] X. D. Xue, K. W. E. Cheng and S. L. Ho, “Correlation of modeling
techniques and power factor for switched-reluctance machines drives,” IEE
Proc. Electric Power Appl., vol. 152, no. 3, pp. 710-722, 2005.
[27] S. Goyal, R. Kumar and R. A. Gupta, “Simulation and analysis of current
controlled PFC converter-inverter fed SRM drive,” IEEE ICIT’05, pp. 1433-
1437, 2005.
E. 數位化功率因數修正
[28] Wanfeng Zhang, Guang Feng, Yan-Fei Liu and Bin Wu, “A digital power factor
correction (PFC) control strategy optimized for DSP,” IEEE Trans. Power
Electron., vol. 19, no. 6, pp. 1474-1485, 2004.
[29] D. M. Van de Sype, K. De Gusseme, A. P. Van den Bossche and J. A. A.
Melkebeek, “A sampling algorithm for digitally controlled boost PFC
converter,” IEEE Trans. Power Electron., vol. 19, no. 3, pp. 649-657, 2004.
[30] A. Olayiwola, B. Sock, M. R. Zolghadri, A. Homaifar, M. Walters and C. Doss,
“Digital controller for a boost PFC converter in continuous conduction mode,”
IEEE ICIEA’06, pp. 1-8, 2006.
[31] Manjing Xie, Bing Lu, Wei Dong and F. C. Lee, “Novel current-loop
feed-forward compensation for Boost PFC Converter,” IEEE APEC’04, vol. 2,
pp. 750-755, 2004.
[32] Min Chen and Jian Sun, “Feedforward Current Control of Boost Single-Phase
PFC Converters,” IEEE Trans. Power Electron., vol. 21, no. 2, pp. 338-348,
2006.
[33] Jinghai Zhou, Zhengyu Lu, Zhengyu Lin, Yuancheng Ren, Zhaoming Qian and
Yousheng Wang, “A novel DSP controlled 2 kW PFC converter with a simple
sampling algorithm,” IEEE APEC’00, vol. 1, pp. 434-437, 2000.
[34] W. Zhang, G. Feng, Y.-F. Liu and B. Wu, , “DSP implementation of predictive
control strategy for power factor correction (PFC),” IEEE APEC’04, vol. 1, pp.
67-73, 2004.
[35] M. Fu and Q. Chen, “A DSP based controller for power factor correction (PFC)
in a rectifier circuit,” IEEE APEC’01, vol.1, pp. 144-149, 2001.
[36] Wanfeng Zhang, Guang Feng, Yan-Fei Liu and Bin Wu, “New digital control
method for power factor correction,” IEEE Trans. Ind. Electron., vol. 53, no. 3,
pp. 987-990, 2006.
[37] Sangsun Kim and P. N. Enjeti, ”Control of multiple single-phase PFC modules
with a single low-cost DSP,” IEEE Trans. Ind. Electron., vol. 39, no. 5, pp.
1379- 1385, 2003.
[38] Jinghai Zhou, Zhengyu Lu, Zhengyu Lin, Yuancheng Ren, Zhaoming Qian and
Yousheng Wang, ”Novel sampling algorithm for DSP controlled 2 kW PFC
converter,” IEEE Trans. Power Electron., vol. 16, no. 2, pp. 217-222, 2001.
[39] Jingquan Chen, A. Prodic, R. W. Erickson and D. Maksimovic, ”Predictive
digital current programmed control,” IEEE Trans. Power Electron., vol. 18, no.
1, pp. 411-419, 2003.
[40] P. Athalye, D. MAksimovic and R. Erickson, ”DSP implementation of a
single-cycle predictive current controller in a boost PFC rectifier,” IEEE
APEC’05, vol. 2, pp. 837-842, 2005.
[41] Z. Z. Ye and M. M. Jovanovic, “Implementation and performance evaluation of
DSP-based control for constant-frequency discontinuous-conduction-mode,”
IEEE Trans. Ind. Electron., vol. 52, no. 1, pp. 98-107, 2005.
[42] Z. Z. Ye, M. M. Jovanovic and B. T. Irving, ” Digital implementation of a
unity-power-factor constant-frequency DCM boost converter,” IEEE APEC’05,
vol. 2, pp. 818-824, 2005.
[43] Jingtao Tan, Lin Chen and Jianping Ying, ” Integration of three-phase PFC and
DC/DC converter for UPS,” IEEE PESC’04, vol. 5, pp. 4062-4066, 2004.
[44] Yu-Kang Lo, Jing-Yuan Lin and Sheng-Yuan Ou, ” Switching-Frequency
Control for Regulated Discontinuous-Conduction-Mode Boost Rectifiers,”
IEEE Trans. Ind. Electron., vol. 54, no. 2, pp. 760-768, 2007.
[45] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd
edition, 2001 by Kluwer Academic Publishers.
[46] 江炫樟譯,「電力電子學」,第三版,全華科技書局,台北,民國93 年6
月。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top